本文概述
给定两棵二叉树, 请检查第一棵树是否为第二棵树的子树。树T的子树是由S中的节点和T中的所有后代组成的树S。
根节点对应的子树是整个树;与任何其他节点相对应的子树称为适当的子树。
例如, 在以下情况下, Tree1是Tree2的子树。
Tree1
x
/ \
a b
\
c
Tree2
z
/ \
x e
/ \ \
a b k
\
c
推荐:请在"
实践
首先, 在继续解决方案之前。
我们已经讨论过
O(n
2
)解决此问题的方法
。本文讨论了O(n)解。这个想法是基于以下事实:
有序和前序/后序唯一标识二叉树
。如果S的有序遍历和预排序遍历分别是T的有序遍历和预排序遍历的两个子串, 则树S是T的子树。
以下是详细步骤。
1
)找到T的有序遍历和预遍历遍历, 将它们存储在两个辅助数组inT []和preT []中。
2
)找到S的有序遍历和预遍历遍历, 将它们存储在inS []和preS []的两个辅助数组中。
3
)如果inS []是inT []的子数组, 而preS []是preT []的子数组, 则S是T的子树。
在上述算法中, 我们还可以使用后序遍历代替前序。
让我们考虑上面的例子
Inorder and Preorder traversals of the big tree are.
inT[] = {a, c, x, b, z, e, k}
preT[] = {z, x, a, c, b, e, k}
Inorder and Preorder traversals of small tree are
inS[] = {a, c, x, b}
preS[] = {x, a, c, b}
We can easily figure out that inS[] is a subarray of
inT[] and preS[] is a subarray of preT[].
编辑
The above algorithm doesn't work for cases where a tree is present
in another tree, but not as a subtree. Consider the following example.
Tree1
x
/ \
a b
/
c
Tree2
x
/ \
a b
/ \
c d
Inorder and Preorder traversals of the big tree or Tree2 are.
Inorder and Preorder traversals of small tree or Tree1 are
The Tree2 is not a subtree of Tree1, but inS[] and preS[] are
subarrays of inT[] and preT[] respectively.
通过在有序和预序遍历中遇到NULL时添加一个特殊字符, 可以扩展上述算法来处理此类情况。感谢Shivam Goel建议此扩展。
以下是上述算法的实现。
C ++
#include <cstring>
#include <iostream>
using namespace std;
#define MAX 100
// Structure of a tree node
struct Node {
char key;
struct Node *left, *right;
};
// A utility function to create a new BST node
Node* newNode( char item)
{
Node* temp = new Node;
temp->key = item;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to store inorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storeInorder(Node* root, char arr[], int & i)
{
if (root == NULL) {
arr[i++] = '$' ;
return ;
}
storeInorder(root->left, arr, i);
arr[i++] = root->key;
storeInorder(root->right, arr, i);
}
// A utility function to store preorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storePreOrder(Node* root, char arr[], int & i)
{
if (root == NULL) {
arr[i++] = '$' ;
return ;
}
arr[i++] = root->key;
storePreOrder(root->left, arr, i);
storePreOrder(root->right, arr, i);
}
/* This function returns true if S is a subtree of T, otherwise false */
bool isSubtree(Node* T, Node* S)
{
/* base cases */
if (S == NULL)
return true ;
if (T == NULL)
return false ;
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
int m = 0, n = 0;
char inT[MAX], inS[MAX];
storeInorder(T, inT, m);
storeInorder(S, inS, n);
inT[m] = '\0' , inS[n] = '\0' ;
// If inS[] is not a substring of inT[], return false
if ( strstr (inT, inS) == NULL)
return false ;
// Store Preorder traversals of T and S in preT[0..m-1]
// and preS[0..n-1] respectively
m = 0, n = 0;
char preT[MAX], preS[MAX];
storePreOrder(T, preT, m);
storePreOrder(S, preS, n);
preT[m] = '\0' , preS[n] = '\0' ;
// If preS[] is not a substring of preT[], return false
// Else return true
return ( strstr (preT, preS) != NULL);
}
// Driver program to test above function
int main()
{
Node* T = newNode( 'a' );
T->left = newNode( 'b' );
T->right = newNode( 'd' );
T->left->left = newNode( 'c' );
T->right->right = newNode( 'e' );
Node* S = newNode( 'a' );
S->left = newNode( 'b' );
S->left->left = newNode( 'c' );
S->right = newNode( 'd' );
if (isSubtree(T, S))
cout << "Yes: S is a subtree of T" ;
else
cout << "No: S is NOT a subtree of T" ;
return 0;
}
Java
// Java program to check if binary tree
// is subtree of another binary tree
class Node {
char data;
Node left, right;
Node( char item)
{
data = item;
left = right = null ;
}
}
class Passing {
int i;
int m = 0 ;
int n = 0 ;
}
class BinaryTree {
static Node root;
Passing p = new Passing();
String strstr(String haystack, String needle)
{
if (haystack == null || needle == null ) {
return null ;
}
int hLength = haystack.length();
int nLength = needle.length();
if (hLength < nLength) {
return null ;
}
if (nLength == 0 ) {
return haystack;
}
for ( int i = 0 ; i <= hLength - nLength; i++) {
if (haystack.charAt(i) == needle.charAt( 0 )) {
int j = 0 ;
for (; j < nLength; j++) {
if (haystack.charAt(i + j) != needle.charAt(j)) {
break ;
}
}
if (j == nLength) {
return haystack.substring(i);
}
}
}
return null ;
}
// A utility function to store inorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storeInorder(Node node, char arr[], Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
storeInorder(node.left, arr, i);
arr[i.i++] = node.data;
storeInorder(node.right, arr, i);
}
// A utility function to store preorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void storePreOrder(Node node, char arr[], Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
arr[i.i++] = node.data;
storePreOrder(node.left, arr, i);
storePreOrder(node.right, arr, i);
}
/* This function returns true if S is a subtree of T, otherwise false */
boolean isSubtree(Node T, Node S)
{
/* base cases */
if (S == null ) {
return true ;
}
if (T == null ) {
return false ;
}
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
char inT[] = new char [ 100 ];
String op1 = String.valueOf(inT);
char inS[] = new char [ 100 ];
String op2 = String.valueOf(inS);
storeInorder(T, inT, p);
storeInorder(S, inS, p);
inT[p.m] = '\0' ;
inS[p.m] = '\0' ;
// If inS[] is not a substring of preS[], return false
if (strstr(op1, op2) != null ) {
return false ;
}
// Store Preorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
p.m = 0 ;
p.n = 0 ;
char preT[] = new char [ 100 ];
char preS[] = new char [ 100 ];
String op3 = String.valueOf(preT);
String op4 = String.valueOf(preS);
storePreOrder(T, preT, p);
storePreOrder(S, preS, p);
preT[p.m] = '\0' ;
preS[p.n] = '\0' ;
// If inS[] is not a substring of preS[], return false
// Else return true
return (strstr(op3, op4) != null );
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
Node T = new Node( 'a' );
T.left = new Node( 'b' );
T.right = new Node( 'd' );
T.left.left = new Node( 'c' );
T.right.right = new Node( 'e' );
Node S = new Node( 'a' );
S.left = new Node( 'b' );
S.right = new Node( 'd' );
S.left.left = new Node( 'c' );
if (tree.isSubtree(T, S)) {
System.out.println( "Yes, S is a subtree of T" );
}
else {
System.out.println( "No, S is not a subtree of T" );
}
}
}
// This code is contributed by Mayank Jaiswal
C#
// C# program to check if binary tree is
// subtree of another binary tree
using System;
public class Node {
public char data;
public Node left, right;
public Node( char item)
{
data = item;
left = right = null ;
}
}
public class Passing {
public int i;
public int m = 0;
public int n = 0;
}
public class BinaryTree {
static Node root;
Passing p = new Passing();
String strstr(String haystack, String needle)
{
if (haystack == null || needle == null ) {
return null ;
}
int hLength = haystack.Length;
int nLength = needle.Length;
if (hLength < nLength) {
return null ;
}
if (nLength == 0) {
return haystack;
}
for ( int i = 0; i <= hLength - nLength; i++) {
if (haystack[i] == needle[0]) {
int j = 0;
for (; j < nLength; j++) {
if (haystack[i + j] != needle[j]) {
break ;
}
}
if (j == nLength) {
return haystack.Substring(i);
}
}
}
return null ;
}
// A utility function to store inorder
// traversal of tree rooted with root in
// an array arr[]. Note that i is passed as reference
void storeInorder(Node node, char [] arr, Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
storeInorder(node.left, arr, i);
arr[i.i++] = node.data;
storeInorder(node.right, arr, i);
}
// A utility function to store preorder
// traversal of tree rooted with root in
// an array arr[]. Note that i is passed as reference
void storePreOrder(Node node, char [] arr, Passing i)
{
if (node == null ) {
arr[i.i++] = '$' ;
return ;
}
arr[i.i++] = node.data;
storePreOrder(node.left, arr, i);
storePreOrder(node.right, arr, i);
}
/* This function returns true if S
is a subtree of T, otherwise false */
bool isSubtree(Node T, Node S)
{
/* base cases */
if (S == null ) {
return true ;
}
if (T == null ) {
return false ;
}
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
char [] inT = new char [100];
String op1 = String.Join( "" , inT);
char [] inS = new char [100];
String op2 = String.Join( "" , inS);
storeInorder(T, inT, p);
storeInorder(S, inS, p);
inT[p.m] = '\0' ;
inS[p.m] = '\0' ;
// If inS[] is not a substring of preS[], return false
if (strstr(op1, op2) != null ) {
return false ;
}
// Store Preorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
p.m = 0;
p.n = 0;
char [] preT = new char [100];
char [] preS = new char [100];
String op3 = String.Join( "" , preT);
String op4 = String.Join( "" , preS);
storePreOrder(T, preT, p);
storePreOrder(S, preS, p);
preT[p.m] = '\0' ;
preS[p.n] = '\0' ;
// If inS[] is not a substring of preS[], return false
// Else return true
return (strstr(op3, op4) != null );
}
// Driver program to test above functions
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
Node T = new Node( 'a' );
T.left = new Node( 'b' );
T.right = new Node( 'd' );
T.left.left = new Node( 'c' );
T.right.right = new Node( 'e' );
Node S = new Node( 'a' );
S.left = new Node( 'b' );
S.right = new Node( 'd' );
S.left.left = new Node( 'c' );
if (tree.isSubtree(T, S)) {
Console.WriteLine( "Yes, S is a subtree of T" );
}
else {
Console.WriteLine( "No, S is not a subtree of T" );
}
}
}
// This code contributed by Rajput-Ji
输出如下:
No: S is NOT a subtree of T
时间复杂度:
二叉树的有序和预序遍历需要O(n)时间。功能
strstr()
也可以使用O(n)时间来实现
KMP字符串匹配算法
.
辅助空间:
上)
谢谢
阿什维尼·辛格(Ashwini Singh)
建议这种方法。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。