算法设计:最长可能的回文

2021年3月11日17:12:02 发表评论 768 次浏览

本文概述

给定一个字符串, 任务是返回其可能的最长分块回文的长度。它表示在不是由字符串字符形成的情况下, 由子字符串形成的回文。为了更好地理解示例

例子:

Input : ghiabcdefhelloadamhelloabcdefghi 
Output : 7
(ghi)(abcdef)(hello)(adam)(hello)(abcdef)(ghi)

Input : merchant
Output : 1
(merchant)

Input : antaprezatepzapreanta
Output : 11
(a)(nt)(a)(pre)(za)(tpe)(za)(pre)(a)(nt)(a)

Input : lsbin
Output : 3
(geeks)(for)(geeks)

推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。

整个想法是从左侧和右侧递归地创建块。

最长可能的回文1

如你所见, 我们可以匹配左侧块中的子字符串, 并将其与确切的右侧块进行匹配。一旦找到匹配项, 我们将递归计算剩余字符串中可能的最长分块回文的长度。一旦不留下任何字符串或找不到更多有效的分块部分, 我们便结束递归。

Java

/* Java program to find the length of longest palindromic
    chunk */
import java.util.*;
import java.lang.*;
import java.io.*;
  
class LongestPalindromicChunk
{
     // Here s is the string whose LCP is needed
     // ln is length of string evaluated till now
     // and str is original string
     private static int LPCRec(String curr_str, int count, int len, String str)
     {
         // if there is noting at all!!
         if (curr_str == null || curr_str.isEmpty())
             return ( 0 );
  
         // if a single letter is left out
         if (curr_str.length() <= 1 )
         {
             if (count != 0 && str.length() - len <= 1 )
                 return (count + 1 );
             else
                 return ( 1 );
         }
  
         // for each length of substring chunk in string
         int n = curr_str.length();
         for ( int i = 0 ; i < n/ 2 ; i++)
         {
             // if left side chunk and right side chunk
             // are same
             if (curr_str.substring( 0 , i + 1 ).
                 equals(curr_str.substring(n- 1 -i, n)))
             {
                 // Call LCP for the part between the
                 // chunks and add 2 to the result.
                 // Length of string evaluated till
                 // now is increased by (i+1)*2
                 return LPCRec(curr_str.substring(i+ 1 , n- 1 -i), count + 2 , len + (i+ 1 )* 2 , str);
             }
         }
  
         return count + 1 ;
     }
  
     // Wrapper over LPCRec()
     public static int LPC(String str)
     {
         return LPCRec(str, 0 , 0 , str);
     }
  
     // driver function
     public static void main(String[] args)
     {
         System.out.println( "V : " + LPC( "V" ));
         System.out.println( "VOLVO : " + LPC( "VOLVO" ));
         System.out.println( "VOLVOV : " + LPC( "VOLVOV" ));
         System.out.println( "ghiabcdefhelloadamhelloabcdefghi : " +
                         LPC( "ghiabcdefhelloadamhelloabcdefghi" ));
  
         System.out.println( "ghiabcdefhelloadamhelloabcdefghik : " +
                         LPC( "ghiabcdefhelloadamhelloabcdefghik" ));
  
         System.out.println( "antaprezatepzapreanta : " +
                         LPC( "antaprezatepzapreanta" ));
     }
}

Python3

# Python3 program to find length of 
# longest palindromic chunk
  
# Here curr_str is the string whose 
# LCP is needed leng is length of 
# string evaluated till now and s  
# is original string 
def LPCRec(curr_str, count, leng, s):
      
     # If there is nothing at all!! 
     if not curr_str:
         return 0
  
     # If a single letter is left out 
     if len (curr_str) < = 1 : 
         if count ! = 0 and len (s) - leng < = 1 : 
             return (count + 1 ) 
         else :
             return 1
  
     # For each length of substring 
     # chunk in string 
     n = len (curr_str) 
     for i in range (n / / 2 ): 
          
         # If left side chunk and right 
         # side chunk are same 
         if (curr_str[ 0 : i + 1 ] = = 
             curr_str[n - 1 - i : n]): 
              
             # Call LCP for the part between the 
             # chunks and add 2 to the result. 
             # Length of string evaluated till 
             # now is increased by (i+1)*2 
             return LPCRec(curr_str[i + 1 : n - 1 - i], count + 2 , leng + (i + 1 ) * 2 , s)
                            
     return count + 1
  
# Wrapper over LPCRec() 
def LPC(s): 
      
     return LPCRec(s, 0 , 0 , s)
  
# Driver code 
print ( "V :" , LPC( "V" ))
print ( "VOLVO :" , LPC( "VOLVO" ))
print ( "VOLVOV :" , LPC( "VOLVOV" ))
print ( "ghiabcdefhelloadamhelloabcdefghi :" , LPC( "ghiabcdefhelloadamhelloabcdefghi" ))
  
print ( "ghiabcdefhelloadamhelloabcdefghik :" , LPC( "ghiabcdefhelloadamhelloabcdefghik" ))
  
print ( "antaprezatepzapreanta :" , LPC( "antaprezatepzapreanta" ))
  
# This code is contributed by Prateek Gupta

C#

// C# program to find length of 
// longest palindromic chunk
using System;
  
class GFG
{
// Here s is the string whose LCP 
// is needed ln is length of string 
// evaluated till now and str is 
// original string 
private static int LPCRec( string curr_str, int count, int len, string str)
{
     // if there is noting at all!! 
     if ( string .ReferenceEquals(curr_str, null ) || 
                                curr_str.Length == 0)
     {
         return (0);
     }
  
     // if a single letter is left out 
     if (curr_str.Length <= 1)
     {
         if (count != 0 && str.Length - len <= 1)
         {
             return (count + 1);
         }
         else
         {
             return (1);
         }
     }
  
     // for each length of substring 
     // chunk in string 
     int n = curr_str.Length;
     for ( int i = 0; i < n / 2; i++)
     {
         // if left side chunk and right side chunk 
         // are same 
         if (curr_str.Substring(0, i + 1).Equals(
             curr_str.Substring(n - 1 - i, n - (n - 1 - i))))
         {
             // Call LCP for the part between the 
             // chunks and add 2 to the result. 
             // Length of string evaluated till 
             // now is increased by (i+1)*2 
             return LPCRec(curr_str.Substring(i + 1, (n - 1 - i) - 
                          (i + 1)), count + 2, len + (i + 1) * 2, str);
         }
     }
  
     return count + 1;
}
  
// Wrapper over LPCRec() 
public static int LPC( string str)
{
     return LPCRec(str, 0, 0, str);
}
  
// Driver Code
public static void Main( string [] args)
{
     Console.WriteLine( "V : " + LPC( "V" ));
     Console.WriteLine( "VOLVO : " + LPC( "VOLVO" ));
     Console.WriteLine( "VOLVOV : " + LPC( "VOLVOV" ));
     Console.WriteLine( "ghiabcdefhelloadamhelloabcdefghi : " + 
                     LPC( "ghiabcdefhelloadamhelloabcdefghi" ));
  
     Console.WriteLine( "ghiabcdefhelloadamhelloabcdefghik : " + 
                     LPC( "ghiabcdefhelloadamhelloabcdefghik" ));
  
     Console.WriteLine( "antaprezatepzapreanta : " + 
                     LPC( "antaprezatepzapreanta" ));
}
}
  
// This code is contributed by Shrikant13

输出如下:

V : 1
VOLVO : 3
VOLVOV : 5
ghiabcdefhelloadamhelloabcdefghi : 7
ghiabcdefhelloadamhelloabcdefghik : 1
antaprezatepzapreanta : 11

以下是带有上述问题的备注的C ++实现。

#include <iostream>
#include <climits>
#include <unordered_map>
using namespace std;
  
unordered_map<string, int > mem;
  
int process(string& s, int l, int r) {
     int ans = 1;
     if (l > r)
         return 0;
     // check if we've already solved this
     if (mem.find(s.substr(l, r-l+1)) != mem.end())
         return mem[s.substr(l, r-l+1)];
     for ( int len = 1; len <= (r-l+1)/2; len++) {
         if (s.substr(l, len) == s.substr(r-len+1, len))
             ans = max(ans, 2 + process(s, l+len, r-len));
     }
     // remember result for future
     mem[s.substr(l, r-l+1)] = ans;
     return ans;
}
  
int LPC(string s) {
     return process(s, 0, s.length()-1);
}
  
int main() {
     cout << LPC( "aaaaabaababbaabaaababababababababbbbaaaaa" ) << endl;
     return 0;
}

资源:职业杯

如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: