使用随机创建的数据集在Python中创建线性回归模型。
线性回归模型
线性回归极客
生成训练集
# python library to generate random numbers
from random import randint
# the limit within which random numbers are generated
TRAIN_SET_LIMIT = 1000
# to create exactly 100 data items
TRAIN_SET_COUNT = 100
# list that contains input and corresponding output
TRAIN_INPUT = list ()
TRAIN_OUTPUT = list ()
# loop to create 100 data items with three columns each
for i in range (TRAIN_SET_COUNT):
a = randint( 0 , TRAIN_SET_LIMIT)
b = randint( 0 , TRAIN_SET_LIMIT)
c = randint( 0 , TRAIN_SET_LIMIT)
# creating the output for each data item
op = a + ( 2 * b) + ( 3 * c)
TRAIN_INPUT.append([a, b, c])
# adding each output to output list
TRAIN_OUTPUT.append(op)
机器学习模型–线性回归
可以通过两个步骤创建模型:
1.
训练
训练数据模型
2.
测验
具有测试数据的模型
训练模型
使用上面的代码创建的数据用于训练模型
# Sk-Learn contains the linear regression model
from sklearn.linear_model import LinearRegression
# Initialize the linear regression model
predictor = LinearRegression(n_jobs = - 1 )
# Fill the Model with the Data
predictor.fit(X = TRAIN_INPUT, y = TRAIN_OUTPUT)
测试数据
测试是手动完成的。可以使用一些随机数据进行测试, 并测试模型是否为输入数据提供正确的结果。
# Random Test data
X_TEST = [[ 10, 20, 30 ]]
# Predict the result of X_TEST which holds testing data
outcome = predictor.predict(X = X_TEST)
# Predict the coefficients
coefficients = predictor.coef_
# Print the result obtained for the test data
print( 'Outcome : {}\nCoefficients : {}' .format(outcome, coefficients))
以上提供的测试数据的结果应为:
10 + 20 * 2 + 30 * 3 = 140。
输出如下
Outcome : [ 140.]
Coefficients : [ 1. 2. 3.]
首先, 你的面试准备可通过以下方式增强你的数据结构概念:Python DS课程。