本文概述
你将获得一个包含正负元素的未排序数组。你必须使用恒定的额外空间在O(n)时间内找到数组中最小的正数。你可以修改原始数组。
例子
Input: {2, 3, 7, 6, 8, -1, -10, 15}
Output: 1
Input: { 2, 3, -7, 6, 8, 1, -10, 15 }
Output: 4
Input: {1, 1, 0, -1, -2}
Output: 2
一种天真的方法解决此问题的方法是搜索给定数组中从1开始的所有正整数。我们可能必须在给定数组中搜索最多n + 1个数字。因此, 在最坏的情况下, 此解决方案需要O(n ^ 2)。
我们可以使用排序以更少的时间来解决它。我们可以在O(nLogn)时间对数组进行排序。数组排序后, 我们要做的就是对数组进行线性扫描。因此, 此方法需要O(nLogn + n)时间, 即O(nLogn)。
我们也可以使用哈希。我们可以建立给定数组中所有正元素的哈希表。一旦建立哈希表。我们可以在哈希表中查找从1开始的所有正整数。一旦我们发现哈希表中不存在的数字, 就将其返回。这种方法平均可能需要O(n)时间, 但需要O(n)额外空间。
O(n)时间和O(1)额外空间解决方案:
这个想法类似于
这个
发布。我们使用数组元素作为索引。
为了标记元素x的存在, 我们将索引x的值更改为负
。但是, 如果存在非正数(-ve和0), 则此方法无效。因此, 我们首先将正数与负数分开, 然后应用该方法。
以下是两步算法。
1)将正数与其他数字分开, 即, 将所有非正数移到左侧。在下面的代码中, segregate()函数完成了这一部分。
2)现在我们可以忽略非正元素, 而只考虑包含所有正元素的数组部分。我们遍历包含所有正数的数组, 并标记元素x的存在, 我们将索引x处的值符号更改为负数。我们再次遍历数组,
打印第一个具有正值的索引
。在下面的代码中, findMissingPositive()函数完成了这一部分。请注意, 在findMissingPositive中, 我们从值中减去了1, 因为C中的索引从0开始。
C ++
/* C++ program to find the smallest positive missing number */
#include <bits/stdc++.h>
using namespace std;
/* Utility to swap to integers */
void swap( int * a, int * b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;
}
/* Utility function that puts all
non-positive (0 and negative) numbers on left
side of arr[] and return count of such numbers */
int segregate( int arr[], int size)
{
int j = 0, i;
for (i = 0; i <size; i++) {
if (arr[i] <= 0) {
swap(&arr[i], &arr[j]);
j++; //increment count of non-positive integers
}
}
return j;
}
/* Find the smallest positive missing number
in an array that contains all positive integers */
int findMissingPositive( int arr[], int size)
{
int i;
//Mark arr[i] as visited by making arr[arr[i] - 1] negative.
//Note that 1 is subtracted because index start
//from 0 and positive numbers start from 1
for (i = 0; i <size; i++) {
if ( abs (arr[i]) - 1 <size && arr[ abs (arr[i]) - 1]> 0)
arr[ abs (arr[i]) - 1] = -arr[ abs (arr[i]) - 1];
}
//Return the first index value at which is positive
for (i = 0; i <size; i++)
if (arr[i]> 0)
//1 is added because indexes start from 0
return i + 1;
return size + 1;
}
/* Find the smallest positive missing
number in an array that contains
both positive and negative integers */
int findMissing( int arr[], int size)
{
//First separate positive and negative numbers
int shift = segregate(arr, size);
//Shift the array and call findMissingPositive for
//positive part
return findMissingPositive(arr + shift, size - shift);
}
//Driver code
int main()
{
int arr[] = { 0, 10, 2, -10, -20 };
int arr_size = sizeof (arr) /sizeof (arr[0]);
int missing = findMissing(arr, arr_size);
cout <<"The smallest positive missing number is " <<missing;
return 0;
}
//This is code is contributed by rathbhupendra
C
/* C program to find the smallest positive missing number */
#include <stdio.h>
#include <stdlib.h>
/* Utility to swap to integers */
void swap( int * a, int * b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;
}
/* Utility function that puts all
non-positive (0 and negative) numbers on left
side of arr[] and return count of such numbers */
int segregate( int arr[], int size)
{
int j = 0, i;
for (i = 0; i <size; i++) {
if (arr[i] <= 0) {
swap(&arr[i], &arr[j]);
j++; //increment count of non-positive integers
}
}
return j;
}
/* Find the smallest positive missing number
in an array that contains all positive integers */
int findMissingPositive( int arr[], int size)
{
int i;
//Mark arr[i] as visited by making arr[arr[i] - 1] negative.
//Note that 1 is subtracted because index start
//from 0 and positive numbers start from 1
for (i = 0; i <size; i++) {
if ( abs (arr[i]) - 1 <size && arr[ abs (arr[i]) - 1]> 0)
arr[ abs (arr[i]) - 1] = -arr[ abs (arr[i]) - 1];
}
//Return the first index value at which is positive
for (i = 0; i <size; i++)
if (arr[i]> 0)
//1 is added because indexes start from 0
return i + 1;
return size + 1;
}
/* Find the smallest positive missing
number in an array that contains
both positive and negative integers */
int findMissing( int arr[], int size)
{
//First separate positive and negative numbers
int shift = segregate(arr, size);
//Shift the array and call findMissingPositive for
//positive part
return findMissingPositive(arr + shift, size - shift);
}
int main()
{
int arr[] = { 0, 10, 2, -10, -20 };
int arr_size = sizeof (arr) /sizeof (arr[0]);
int missing = findMissing(arr, arr_size);
printf ( "The smallest positive missing number is %d " , missing);
getchar ();
return 0;
}
Java
//Java program to find the smallest
//positive missing number
import java.util.*;
class Main {
/* Utility function that puts all non-positive
(0 and negative) numbers on left side of
arr[] and return count of such numbers */
static int segregate( int arr[], int size)
{
int j = 0 , i;
for (i = 0 ; i <size; i++) {
if (arr[i] <= 0 ) {
int temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
//increment count of non-positive
//integers
j++;
}
}
return j;
}
/* Find the smallest positive missing
number in an array that contains
all positive integers */
static int findMissingPositive( int arr[], int size)
{
int i;
//Mark arr[i] as visited by making
//arr[arr[i] - 1] negative. Note that
//1 is subtracted because index start
//from 0 and positive numbers start from 1
for (i = 0 ; i <size; i++) {
int x = Math.abs(arr[i]);
if (x - 1 <size && arr[x - 1 ]> 0 )
arr[x - 1 ] = -arr[x - 1 ];
}
//Return the first index value at which
//is positive
for (i = 0 ; i <size; i++)
if (arr[i]> 0 )
return i + 1 ; //1 is added becuase indexes
//start from 0
return size + 1 ;
}
/* Find the smallest positive missing
number in an array that contains
both positive and negative integers */
static int findMissing( int arr[], int size)
{
//First separate positive and
//negative numbers
int shift = segregate(arr, size);
int arr2[] = new int [size - shift];
int j = 0 ;
for ( int i = shift; i <size; i++) {
arr2[j] = arr[i];
j++;
}
//Shift the array and call
//findMissingPositive for
//positive part
return findMissingPositive(arr2, j);
}
//main function
public static void main(String[] args)
{
int arr[] = { 0 , 10 , 2 , - 10 , - 20 };
int arr_size = arr.length;
int missing = findMissing(arr, arr_size);
System.out.println( "The smallest positive missing number is " + missing);
}
}
python
''' Python program to find the
smallest positive missing number '''
''' Utility function that puts all
non-positive (0 and negative) numbers on left
side of arr[] and return count of such numbers '''
def segregate(arr, size):
j = 0
for i in range (size):
if (arr[i] <= 0 ):
arr[i], arr[j] = arr[j], arr[i]
j + = 1 # increment count of non-positive integers
return j
''' Find the smallest positive missing number
in an array that contains all positive integers '''
def findMissingPositive(arr, size):
# Mark arr[i] as visited by making arr[arr[i] - 1] negative.
# Note that 1 is subtracted because index start
# from 0 and positive numbers start from 1
for i in range (size):
if ( abs (arr[i]) - 1 <size and arr[ abs (arr[i]) - 1 ]> 0 ):
arr[ abs (arr[i]) - 1 ] = - arr[ abs (arr[i]) - 1 ]
# Return the first index value at which is positive
for i in range (size):
if (arr[i]> 0 ):
# 1 is added because indexes start from 0
return i + 1
return size + 1
''' Find the smallest positive missing
number in an array that contains
both positive and negative integers '''
def findMissing(arr, size):
# First separate positive and negative numbers
shift = segregate(arr, size)
# Shift the array and call findMissingPositive for
# positive part
return findMissingPositive(arr[shift:], size - shift)
# Driver code
arr = [ 0 , 10 , 2 , - 10 , - 20 ]
arr_size = len (arr)
missing = findMissing(arr, arr_size)
print ( "The smallest positive missing number is " , missing)
# This code is contributed by Shubhamsingh10
C#
//C# program to find the smallest
//positive missing number
using System;
class main {
//Utility function that puts all
//non-positive (0 and negative)
//numbers on left side of arr[]
//and return count of such numbers
static int segregate( int [] arr, int size)
{
int j = 0, i;
for (i = 0; i <size; i++) {
if (arr[i] <= 0) {
int temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
//increment count of non-positive
//integers
j++;
}
}
return j;
}
//Find the smallest positive missing
//number in an array that contains
//all positive integers
static int findMissingPositive( int [] arr, int size)
{
int i;
//Mark arr[i] as visited by making
//arr[arr[i] - 1] negative. Note that
//1 is subtracted as index start from
//0 and positive numbers start from 1
for (i = 0; i <size; i++) {
if (Math.Abs(arr[i]) - 1 <size && arr[ Math.Abs(arr[i]) - 1]> 0)
arr[ Math.Abs(arr[i]) - 1] = -arr[ Math.Abs(arr[i]) - 1];
}
//Return the first index value at
//which is positive
for (i = 0; i <size; i++)
if (arr[i]> 0)
return i + 1;
//1 is added becuase indexes
//start from 0
return size + 1;
}
//Find the smallest positive
//missing number in array that
//contains both positive and
//negative integers
static int findMissing( int [] arr, int size)
{
//First separate positive and
//negative numbers
int shift = segregate(arr, size);
int [] arr2 = new int [size - shift];
int j = 0;
for ( int i = shift; i <size; i++) {
arr2[j] = arr[i];
j++;
}
//Shift the array and call
//findMissingPositive for
//positive part
return findMissingPositive(arr2, j);
}
//main function
public static void Main()
{
int [] arr = { 0, 10, 2, -10, -20 };
int arr_size = arr.Length;
int missing = findMissing(arr, arr_size);
Console.WriteLine( "The smallest positive missing number is " + missing);
}
}
//This code is contributed by Anant Agarwal.
输出如下:
The smallest positive missing number is 1
请注意, 此方法会修改原始数组。我们可以更改分隔数组中元素的符号, 以获取相同的元素集。但是我们仍然放宽元素的顺序。如果我们要保持原始数组不变, 则可以创建该数组的副本, 然后在temp数组上运行此方法。
另一种方法:在此问题中, 我们创建了一个全为0的列表, 其大小为给定数组的max()值。现在, 无论何时在原始数组中遇到任何正值, 我们都会将列表的索引值更改为1。因此, 完成后, 我们简单地遍历修改后的列表, 即遇到的第一个0, 即(索引值+ 1)应该是我们的答案, 因为python中的索引从0开始。
下面是上述方法的实现:
C ++
//C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
//Function to return the first missing positive
//number from the given unsorted array
int firstMissingPos( int A[], int n)
{
//To mark the occurrence of elements
bool present[n + 1] = { false };
//Mark the occurrences
for ( int i = 0; i <n; i++) {
//Only mark the required elements
//All non-positive elements and
//the elements greater n + 1 will never
//be the answer
//For example, the array will be {1, 2, 3}
//in the worst case and the result
//will be 4 which is n + 1
if (A[i]> 0 && A[i] <= n)
present[A[i]] = true ;
}
//Find the first element which didn't
//appear in the original array
for ( int i = 1; i <= n; i++)
if (!present[i])
return i;
//If the original array was of the
//type {1, 2, 3} in its sorted form
return n + 1;
}
//Driver code
int main()
{
int A[] = { 0, 10, 2, -10, -20 };
int size = sizeof (A) /sizeof (A[0]);
cout <<firstMissingPos(A, size);
}
//This code is contributed by gp6
Java
//Java Program to find the smallest
//positive missing number
import java.util.Arrays;
public class GFG {
static int solution( int [] A)
{
int n = A.length;
//To mark the occurrence of elements
boolean [] present = new boolean [n + 1 ];
//Mark the occurrences
for ( int i = 0 ; i <n; i++) {
//Only mark the required elements
//All non-positive elements and
//the elements greater n + 1 will never
//be the answer
//For example, the array will be {1, 2, 3}
//in the worst case and the result
//will be 4 which is n + 1
if (A[i]> 0 && A[i] <= n)
present[A[i]] = true ;
}
//Find the first element which didn't
//appear in the original array
for ( int i = 1 ; i <= n; i++)
if (!present[i])
return i;
//If the original array was of the
//type {1, 2, 3} in its sorted form
return n + 1 ;
}
public static void main(String[] args)
{
int A[] = { 0 , 10 , 2 , - 10 , - 20 };
System.out.println(solution(A));
}
}
//This code is contributed by 29AjayKumar
Python 3
# Python Program to find the smallest
# positive missing number
def solution(A): # Our original array
m = max (A) # Storing maximum value
if m <1 :
# In case all values in our array are negative
return 1
if len (A) = = 1 :
# If it contains only one element
return 2 if A[ 0 ] = = 1 else 1
l = [ 0 ] * m
for i in range ( len (A)):
if A[i]> 0 :
if l[A[i] - 1 ] ! = 1 :
# Changing the value status at the index of our list
l[A[i] - 1 ] = 1
for i in range ( len (l)):
# Encountering first 0, i.e, the element with least value
if l[i] = = 0 :
return i + 1
# In case all values are filled between 1 and m
return i + 2
A = [ 0 , 10 , 2 , - 10 , - 20 ]
print (solution(A))
C#
//C# Program to find the smallest
//positive missing number
using System;
using System.Linq;
class GFG {
static int solution( int [] A)
{
//Our original array
int m = A.Max(); //Storing maximum value
//In case all values in our array are negative
if (m <1) {
return 1;
}
if (A.Length == 1) {
//If it contains only one element
if (A[0] == 1) {
return 2;
}
else {
return 1;
}
}
int i = 0;
int [] l = new int [m];
for (i = 0; i <A.Length; i++) {
if (A[i]> 0) {
//Changing the value status at the index of our list
if (l[A[i] - 1] != 1) {
l[A[i] - 1] = 1;
}
}
}
//Encountering first 0, i.e, the element with least value
for (i = 0; i <l.Length; i++) {
if (l[i] == 0) {
return i + 1;
}
}
//In case all values are filled between 1 and m
return i + 2;
}
//Driver code
public static void Main()
{
int [] A = { 0, 10, 2, -10, -20 };
Console.WriteLine(solution(A));
}
}
//This code is contributed by PrinciRaj1992
的PHP
<?php
//PHP Program to find the smallest
//positive missing number
function solution( $A ){ //Our original array
$m = max( $A ); //Storing maximum value
if ( $m <1)
{
//In case all values in our array are negative
return 1;
}
if (sizeof( $A ) == 1)
{
//If it contains only one element
if ( $A [0] == 1)
return 2 ;
else
return 1 ;
}
$l = array_fill (0, $m , NULL);
for ( $i = 0; $i <sizeof( $A ); $i ++)
{
if ( $A [ $i ]> 0)
{
if ( $l [ $A [ $i ] - 1] != 1)
{
//Changing the value status at the index of our list
$l [ $A [ $i ] - 1] = 1;
}
}
}
for ( $i = 0; $i <sizeof( $l ); $i ++)
{
//Encountering first 0, i.e, the element with least value
if ( $l [ $i ] == 0)
return $i +1;
}
//In case all values are filled between 1 and m
return $i +2;
}
$A = array (0, 10, 2, -10, -20);
echo solution( $A );
return 0;
?>
输出如下:
1
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。