本文概述
给定一个整数K和一个仅包含1和-1的数组arr,任务是找出是否存在任何大小为K的子集,其元素之和为0。
例子:
输入:arr [] = {1, -1, 1}, K = 2
输出:YES
{1, -1}是有效的子集
输入:arr [] = {1, 1, -1, -1, 1} , K = 5
输出:NO
方法:
- 为了使和为0,在子集中必须有相同数量的1和-1。
- 如果K是奇数,那么没有一个子集满足给定的条件。
- 否则,如果K是偶数我们需要选择(K / 2) 1和(K / 2) -1来组成子集使所有元素之和为0
- 所以,如果K是偶数并且1的个数≥K / 2和-1的个数≥K / 2那么输出Yes否则输出No。
下面是上述方法的实现:
C ++
//C++ program to find if there is a subset of size
//k with sum 0 in an array of -1 and +1
#include <bits/stdc++.h>
using namespace std;
//Function to return the number of 1's in the array
int countOnes( int n, int a[])
{
int i, count = 0;
for (i = 0; i <n; i++)
if (a[i] == 1)
count++;
return count;
}
bool isSubset( int arr[], int n, int k)
{
int countPos1 = countOnes(n, arr);
int countNeg1 = n - countPos1;
//If K is even and there are
//at least K/2 1's and -1's
return (k % 2 == 0 && countPos1>= k /2 &&
countNeg1>= k /2);
}
//Driver Program to test above function
int main()
{
int a[] = { 1, 1, -1, -1, 1 };
int n = sizeof (a) /sizeof (a[0]);
int k = 5;
if (isSubset(a, n, k))
cout <<"Yes" ;
else
cout <<"No" ;
return 0;
}
Java
//Java program to find if there is a subset of size
//k with sum 0 in an array of -1 and +1
import java.io.*;
class GFG {
//Function to return the number of 1's in the array
static int countOnes( int n, int a[])
{
int i, count = 0 ;
for (i = 0 ; i <n; i++)
if (a[i] == 1 )
count++;
return count;
}
static boolean isSubset( int arr[], int n, int k)
{
int countPos1 = countOnes(n, arr);
int countNeg1 = n - countPos1;
//If K is even and there are
//at least K/2 1's and -1's
return (k % 2 == 0 && countPos1>= k /2 &&
countNeg1>= k /2 );
}
//Driver Program to test above function
public static void main (String[] args) {
int []a = { 1 , 1 , - 1 , - 1 , 1 };
int n = a.length;
int k = 5 ;
if (isSubset(a, n, k))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
//This code is contributed by shs
Python3
# Python3 program to find if there is
# a subset of size k with sum 0 in an
# array of -1 and +1
# Function to return the number of
# 1's in the array
def countOnes(n, a):
count = 0
for i in range ( 0 , n):
if a[i] = = 1 :
count + = 1
return count
def isSubset(arr, n, k):
countPos1 = countOnes(n, arr)
countNeg1 = n - countPos1
# If K is even and there are
# at least K/2 1's and -1's
return (k % 2 = = 0 and countPos1> = k //2 and
countNeg1> = k //2 )
# Driver Code
if __name__ = = "__main__" :
a = [ 1 , 1 , - 1 , - 1 , 1 ]
n = len (a)
k = 5
if isSubset(a, n, k) = = True :
print ( "Yes" )
else :
print ( "No" )
# This code is contributed
# by Rituraj Jain
C#
//C# program to find if there is
//a subset of size k with sum 0
//in an array of -1 and +1
using System;
class GFG
{
//Function to return the number
//of 1's in the array
static int countOnes( int n, int []a)
{
int i, count = 0;
for (i = 0; i <n; i++)
if (a[i] == 1)
count++;
return count;
}
static bool isSubset( int []arr, int n, int k)
{
int countPos1 = countOnes(n, arr);
int countNeg1 = n - countPos1;
//If K is even and there are
//at least K/2 1's and -1's
return (k % 2 == 0 && countPos1>= k /2 &&
countNeg1>= k /2);
}
//Driver Code
public static void Main ()
{
int []a = { 1, 1, -1, -1, 1 };
int n = a.Length;
int k = 5;
if (isSubset(a, n, k))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
//This code is contributed by shs
PHP
<?php
//PHP program to find if there
//is a subset of size k with
//sum 0 in an array of -1 and +1
//Function to return the number
//of 1's in the array
function countOnes( $n , $a )
{
$count = 0;
for ( $i = 0; $i <$n ; $i ++)
if ( $a [ $i ] == 1)
$count ++;
return $count ;
}
function isSubset( $arr , $n , $k )
{
$countPos1 = countOnes( $n , $arr );
$countNeg1 = $n - $countPos1 ;
//If K is even and there are
//at least K/2 1's and -1's
return ( $k % 2 == 0 && $countPos1>= $k /2 &&
$countNeg1>= $k /2);
}
//Driver Code
$a = array (1, 1, -1, -1, 1);
$n = sizeof( $a );
$k = 5;
if (isSubset( $a , $n , $k ))
echo "Yes" ;
else
echo "No" ;
//This code is contributed
//by Akanksha Rai
?>
输出如下:
No
时间复杂度:O(n)