从BST构建二叉树,使其遍历级别顺序可打印排序的数据

2021年4月22日15:04:33 发表评论 1,114 次浏览

本文概述

构造一个二叉树从给定的二进制搜索树以便它的级别顺序遍历输出排序后的数据。

例子:

输入:输出:1 2 3
输入:输出:1 2 3 4 5

方法:

  • 执行给定的二进制搜索树的有序遍历
  • 按级别顺序将每个节点添加到二叉树
  • 最后, 打印创建的二叉树的级别顺序遍历。

下面是上述方法的实现:

C ++

//C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
//Structure to hold the contents
//of the new node
struct node {
     int data;
     node *left, *right;
}* root1 = NULL;
  
//Helper function to add and
//return the newly added node
node* add( int data)
{
     node* newnode = new node;
     newnode->data = data;
     newnode->left = newnode->right = NULL;
     return newnode;
}
  
//Function to add a node to the
//Binary Tree in the level order
void addinBT( int data)
{
  
     //If it is the first node
     //to be added then make
     //it the root node
     if (root1 == NULL)
         root1 = add(data);
     else {
         queue<node*> Q;
         Q.push(root1);
         while (!Q.empty()) {
  
             //Get and remove the front
             node* temp = Q.front();
             Q.pop();
  
             //If the left child of the current
             //node is null then create the new
             //node here and break
             if (temp->left == NULL) {
                 temp->left = add(data);
                 break ;
             }
             else
                 Q.push(temp->left);
  
             //If the right child of the current
             //node is null then create the new
             //node here and break
             if (temp->right == NULL) {
                 temp->right = add(data);
                 break ;
             }
             else
                 Q.push(temp->right);
         }
     }
}
  
//Function to add a node to
//the Binary Search tree
node* addinBST(node* root, int data)
{
  
     //If the current node is null
     //then create a new node here
     //with the given data
     if (root == NULL)
         root = add(data);
  
     //If the data is smaller than the
     //current node's data then recur
     //for the left sub-tree
     else if (data <root->data)
         root->left = addinBST(root->left, data);
  
     //Else recur for the right sub-tree
     else
         root->right = addinBST(root->right, data);
     return root;
}
  
//Function to perform a level order
//insertion in the Binary Tree from
//the given Binary Search tree
void addinorder(node* root)
{
     if (root == NULL)
         return ;
     addinorder(root->left);
     addinBT(root->data);
     addinorder(root->right);
}
  
//Function to print the level order
//traversal of the binary tree
void printlvl()
{
     queue<node*> Q;
  
     //Push root to the queue
     Q.push(root1);
     while (!Q.empty()) {
  
         //Get the front
         node* temp = Q.front();
  
         //Remove the front
         Q.pop();
  
         //Print the data
         cout <<temp->data <<" " ;
  
         //Push the left child
         if (temp->left != NULL)
             Q.push(temp->left);
  
         //Push the right child
         if (temp->right != NULL)
             Q.push(temp->right);
     }
}
  
//Driver code
int main()
{
     //Create the Binary Search Tree
     node* root = NULL;
     root = addinBST(root, 1);
     root = addinBST(root, 2);
     root = addinBST(root, 3);
     root = addinBST(root, 4);
     root = addinBST(root, 5);
  
     //Add nodes of the Binary Search
     //Tree to the Binary Tree
     addinorder(root);
  
     //Print the level order traversal
     //of the Binary Tree
     printlvl();
  
     return 0;
}

Java

//Java implementation of the approach
import java.util.*;
  
class GFG
{
  
//Structure to hold the contents
//of the new node
static class node 
{
     int data;
     node left, right;
}
static node root1 = null ;
  
//Helper function to add and
//return the newly added node
static node add( int data)
{
     node newnode = new node();
     newnode.data = data;
     newnode.left = newnode.right = null ;
     return newnode;
}
  
//Function to add a node to the
//Binary Tree in the level order
static void addinBT( int data)
{
  
     //If it is the first node
     //to be added then make
     //it the root node
     if (root1 == null )
         root1 = add(data);
     else 
     {
         Queue<node> Q = new LinkedList<>();
         Q.add(root1);
         while (!Q.isEmpty()) 
         {
  
             //Get and remove the front
             node temp = Q.peek();
             Q.remove();
  
             //If the left child of the current
             //node is null then create the new
             //node here and break
             if (temp.left == null ) 
             {
                 temp.left = add(data);
                 break ;
             }
             else
                 Q.add(temp.left);
  
             //If the right child of the current
             //node is null then create the new
             //node here and break
             if (temp.right == null )
             {
                 temp.right = add(data);
                 break ;
             }
             else
                 Q.add(temp.right);
         }
     }
}
  
//Function to add a node to
//the Binary Search tree
static node addinBST(node root, int data)
{
  
     //If the current node is null
     //then create a new node here
     //with the given data
     if (root == null )
         root = add(data);
  
     //If the data is smaller than the
     //current node's data then recur
     //for the left sub-tree
     else if (data <root.data)
         root.left = addinBST(root.left, data);
  
     //Else recur for the right sub-tree
     else
         root.right = addinBST(root.right, data);
     return root;
}
  
//Function to perform a level order
//insertion in the Binary Tree from
//the given Binary Search tree
static void addinorder(node root)
{
     if (root == null )
         return ;
     addinorder(root.left);
     addinBT(root.data);
     addinorder(root.right);
}
  
//Function to print the level order
//traversal of the binary tree
static void printlvl()
{
     Queue<node> Q = new LinkedList<>();
  
     //Push root to the queue
     Q.add(root1);
     while (!Q.isEmpty()) 
     {
  
         //Get the front
         node temp = Q.peek();
  
         //Remove the front
         Q.remove();
  
         //Print the data
         System.out.print(temp.data + " " );
  
         //Push the left child
         if (temp.left != null )
             Q.add(temp.left);
  
         //Push the right child
         if (temp.right != null )
             Q.add(temp.right);
     }
}
  
//Driver code
public static void main(String[] args)
{
     //Create the Binary Search Tree
     node root = null ;
     root = addinBST(root, 1 );
     root = addinBST(root, 2 );
     root = addinBST(root, 3 );
     root = addinBST(root, 4 );
     root = addinBST(root, 5 );
  
     //Add nodes of the Binary Search
     //Tree to the Binary Tree
     addinorder(root);
  
     //Print the level order traversal
     //of the Binary Tree
     printlvl();
}
}
  
//This code is contributed by Rajput-Ji

Python3

# Python3 implementation of the approach 
  
# Structure to hold the contents 
# of the new node 
class add: 
      
     # Constructor to create a new node 
     def __init__( self , data): 
         self .data = data 
         self .left = self .right = None
  
root1 = None
  
# Function to add a node to the 
# Binary Tree in the level order 
def addinBT(data):
     global root1
      
     # If it is the first node 
     # to be added then make 
     # it the root node 
     if (root1 = = None ):
         root1 = add(data) 
     else : 
         Q = [root1]
         while ( len (Q)):
              
             # Get and remove the front 
             temp = Q[ 0 ]
             Q.pop( 0 ) 
              
             # If the left child of the current 
             # node is None then create the new 
             # node here and break 
             if (temp.left = = None ):
                 temp.left = add(data) 
                 break
             else :
                 Q.append(temp.left) 
                  
             # If the right child of the current 
             # node is None then create the new 
             # node here and break 
             if (temp.right = = None ):
                 temp.right = add(data) 
                 break
             else :
                 Q.append(temp.right) 
                  
# Function to add a node to 
# the Binary Search tree 
def addinBST( root, data):
      
     # If the current node is None 
     # then create a new node here 
     # with the given data 
     if (root = = None ):
         root = add(data) 
          
     # If the data is smaller than the 
     # current node's data then recur 
     # for the left sub-tree 
     elif (data <root.data):
         root.left = addinBST(root.left, data) 
          
     # Else recur for the right sub-tree 
     else :
         root.right = addinBST(root.right, data) 
     return root 
      
# Function to perform a level order 
# insertion in the Binary Tree from 
# the given Binary Search tree 
def addinorder( root):
     if (root = = None ):
         return
     addinorder(root.left) 
     addinBT(root.data) 
     addinorder(root.right) 
      
# Function to print the level order 
# traversal of the binary tree 
def printlvl():
  
     Q = []
      
     # Push root to the 
     Q.append(root1) 
     while ( len (Q)):
          
         # Get the front 
         temp = Q[ 0 ]
          
         # Remove the front 
         Q.pop( 0 ) 
          
         # Print the data 
         print (temp.data , end = " " )
          
         # Push the left child 
         if (temp.left ! = None ):
             Q.append(temp.left) 
          
         # Push the right child 
         if (temp.right ! = None ):
             Q.append(temp.right) 
  
# Driver code 
  
# Create the Binary Search Tree 
root = add( 1 ) 
root = addinBST(root, 2 ) 
root = addinBST(root, 3 ) 
root = addinBST(root, 4 ) 
root = addinBST(root, 5 ) 
  
# Add nodes of the Binary Search 
# Tree to the Binary Tree 
addinorder(root) 
  
# Print the level order traversal 
# of the Binary Tree 
printlvl() 
  
# This code is contributed by SHUBHAMSINGH10

C#

//C# implementation of the approach
using System;
using System.Collections.Generic;
  
class GFG
{
  
//Structure to hold the contents
//of the new node
public class node 
{
     public int data;
     public node left, right;
}
static node root1 = null ;
  
//Helper function to add and
//return the newly added node
static node add( int data)
{
     node newnode = new node();
     newnode.data = data;
     newnode.left = newnode.right = null ;
     return newnode;
}
  
//Function to add a node to the
//Binary Tree in the level order
static void addinBT( int data)
{
  
     //If it is the first node
     //to be added then make
     //it the root node
     if (root1 == null )
         root1 = add(data);
     else
     {
         Queue<node> Q = new Queue<node>();
         Q.Enqueue(root1);
         while (Q.Count != 0) 
         {
  
             //Get and remove the front
             node temp = Q.Peek();
             Q.Dequeue();
  
             //If the left child of the current
             //node is null then create the new
             //node here and break
             if (temp.left == null ) 
             {
                 temp.left = add(data);
                 break ;
             }
             else
                 Q.Enqueue(temp.left);
  
             //If the right child of the current
             //node is null then create the new
             //node here and break
             if (temp.right == null )
             {
                 temp.right = add(data);
                 break ;
             }
             else
                 Q.Enqueue(temp.right);
         }
     }
}
  
//Function to add a node to
//the Binary Search tree
static node addinBST(node root, int data)
{
  
     //If the current node is null
     //then create a new node here
     //with the given data
     if (root == null )
         root = add(data);
  
     //If the data is smaller than the
     //current node's data then recur
     //for the left sub-tree
     else if (data <root.data)
         root.left = addinBST(root.left, data);
  
     //Else recur for the right sub-tree
     else
         root.right = addinBST(root.right, data);
     return root;
}
  
//Function to perform a level order
//insertion in the Binary Tree from
//the given Binary Search tree
static void addinorder(node root)
{
     if (root == null )
         return ;
     addinorder(root.left);
     addinBT(root.data);
     addinorder(root.right);
}
  
//Function to print the level order
//traversal of the binary tree
static void printlvl()
{
     Queue<node> Q = new Queue<node>();
  
     //Push root to the queue
     Q.Enqueue(root1);
     while (Q.Count != 0) 
     {
  
         //Get the front
         node temp = Q.Peek();
  
         //Remove the front
         Q.Dequeue();
  
         //Print the data
         Console.Write(temp.data + " " );
  
         //Push the left child
         if (temp.left != null )
             Q.Enqueue(temp.left);
  
         //Push the right child
         if (temp.right != null )
             Q.Enqueue(temp.right);
     }
}
  
//Driver code
public static void Main(String[] args)
{
     //Create the Binary Search Tree
     node root = null ;
     root = addinBST(root, 1);
     root = addinBST(root, 2);
     root = addinBST(root, 3);
     root = addinBST(root, 4);
     root = addinBST(root, 5);
  
     //Add nodes of the Binary Search
     //Tree to the Binary Tree
     addinorder(root);
  
     //Print the level order traversal
     //of the Binary Tree
     printlvl();
}
}
  
//This code is contributed by Rajput-Ji

输出如下:

1 2 3 4 5

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: