本文概述
快速选择是一种选择算法, 用于在无序列表中找到第k个最小的元素。它与快速排序排序算法。
例子:
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10
该算法类似于QuickSort。不同之处在于, 它只对包含第k个最小元素的部分重复出现, 而不是在两侧都重复出现。逻辑很简单, 如果分区元素的索引大于k, 则针对左部分递归。如果index与k相同, 则找到第k个最小元素, 然后返回。如果索引小于k, 则返回正确的部分。这将预期的复杂度从O(n log n)降低到O(n), 最坏的情况是O(n ^ 2)。
function quickSelect(list, left, right, k)
if left = right
return list[left]
Select a pivotIndex between left and right
pivotIndex := partition(list, left, right, pivotIndex)
if k = pivotIndex
return list[k]
else if k <pivotIndex
right := pivotIndex - 1
else
left := pivotIndex + 1
C ++
//CPP program for implementation of QuickSelect
#include <bits/stdc++.h>
using namespace std;
//Standard partition process of QuickSort().
//It considers the last element as pivot
//and moves all smaller element to left of
//it and greater elements to right
int partition( int arr[], int l, int r)
{
int x = arr[r], i = l;
for ( int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(arr[i], arr[j]);
i++;
}
}
swap(arr[i], arr[r]);
return i;
}
//This function returns k'th smallest
//element in arr[l..r] using QuickSort
//based method. ASSUMPTION: ALL ELEMENTS
//IN ARR[] ARE DISTINCT
int kthSmallest( int arr[], int l, int r, int k)
{
//If k is smaller than number of
//elements in array
if (k> 0 && k <= r - l + 1) {
//Partition the array around last
//element and get position of pivot
//element in sorted array
int index = partition(arr, l, r);
//If position is same as k
if (index - l == k - 1)
return arr[index];
//If position is more, recur
//for left subarray
if (index - l> k - 1)
return kthSmallest(arr, l, index - 1, k);
//Else recur for right subarray
return kthSmallest(arr, index + 1, r, k - index + l - 1);
}
//If k is more than number of
//elements in array
return INT_MAX;
}
//Driver program to test above methods
int main()
{
int arr[] = { 10, 4, 5, 8, 6, 11, 26 };
int n = sizeof (arr) /sizeof (arr[0]);
int k = 3;
cout <<"K-th smallest element is "
<<kthSmallest(arr, 0, n - 1, k);
return 0;
}
Java
//Java program of Quick Select
import java.util.Arrays;
class GFG
{
//partition function similar to quick sort
//Considers last element as pivot and adds
//elements with less value to the left and
//high value to the right and also changes
//the pivot position to its respective position
//in the final array.
public static int partition ( int [] arr, int low, int high)
{
int pivot = arr[high], pivotloc = low;
for ( int i = low; i <= high; i++)
{
//inserting elements of less value
//to the left of the pivot location
if (arr[i] <pivot)
{
int temp = arr[i];
arr[i] = arr[pivotloc];
arr[pivotloc] = temp;
pivotloc++;
}
}
//swapping pivot to the final pivot location
int temp = arr[high];
arr[high] = arr[pivotloc];
arr[pivotloc] = temp;
return pivotloc;
}
//finds the kth position (of the sorted array)
//in a given unsorted array i.e this function
//can be used to find both kth largest and
//kth smallest element in the array.
//ASSUMPTION: all elements in arr[] are distinct
public static int kthSmallest( int [] arr, int low, int high, int k)
{
//find the partition
int partition = partition(arr, low, high);
//if partition value is equal to the kth position, //return value at k.
if (partition == k)
return arr[partition];
//if partition value is less than kth position, //search right side of the array.
else if (partition <k )
return kthSmallest(arr, partition + 1 , high, k );
//if partition value is more than kth position, //search left side of the array.
else
return kthSmallest(arr, low, partition- 1 , k );
}
//Driver Code
public static void main(String[] args)
{
int [] array = new int []{ 10 , 4 , 5 , 8 , 6 , 11 , 26 };
int [] arraycopy = new int []{ 10 , 4 , 5 , 8 , 6 , 11 , 26 };
int kPosition = 3 ;
int length = array.length;
if (kPosition> length)
{
System.out.println( "Index out of bound" );
}
else
{
//find kth smallest value
System.out.println( "K-th smallest element in array : " +
kthSmallest(arraycopy, 0 , length - 1 , kPosition - 1 ));
}
}
}
//This code is contributed by Saiteja Pamulapati
Python3
# Python3 program of Quick Select
# Standard partition process of QuickSort().
# It considers the last element as pivot
# and moves all smaller element to left of
# it and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range (l, r):
if arr[j] <= x:
arr[i], arr[j] = arr[j], arr[i]
i + = 1
arr[i], arr[r] = arr[r], arr[i]
return i
# finds the kth position (of the sorted array)
# in a given unsorted array i.e this function
# can be used to find both kth largest and
# kth smallest element in the array.
# ASSUMPTION: all elements in arr[] are distinct
def kthSmallest(arr, l, r, k):
# if k is smaller than number of
# elements in array
if (k> 0 and k <= r - l + 1 ):
# Partition the array around last
# element and get position of pivot
# element in sorted array
index = partition(arr, l, r)
# if position is same as k
if (index - l = = k - 1 ):
return arr[index]
# If position is more, recur
# for left subarray
if (index - l> k - 1 ):
return kthSmallest(arr, l, index - 1 , k)
# Else recur for right subarray
return kthSmallest(arr, index + 1 , r, k - index + l - 1 )
return INT_MAX
# Driver Code
arr = [ 10 , 4 , 5 , 8 , 6 , 11 , 26 ]
n = len (arr)
k = 3
print ( "K-th smallest element is " , end = "")
print (kthSmallest(arr, 0 , n - 1 , k))
# This code is contributed by Muskan Kalra.
C#
//C# program of Quick Select
using System;
class GFG
{
//partition function similar to quick sort
//Considers last element as pivot and adds
//elements with less value to the left and
//high value to the right and also changes
//the pivot position to its respective position
//in the readonly array.
static int partitions( int []arr, int low, int high)
{
int pivot = arr[high], pivotloc = low, temp;
for ( int i = low; i <= high; i++)
{
//inserting elements of less value
//to the left of the pivot location
if (arr[i] <pivot)
{
temp = arr[i];
arr[i] = arr[pivotloc];
arr[pivotloc] = temp;
pivotloc++;
}
}
//swapping pivot to the readonly pivot location
temp = arr[high];
arr[high] = arr[pivotloc];
arr[pivotloc] = temp;
return pivotloc;
}
//finds the kth position (of the sorted array)
//in a given unsorted array i.e this function
//can be used to find both kth largest and
//kth smallest element in the array.
//ASSUMPTION: all elements in []arr are distinct
static int kthSmallest( int [] arr, int low, int high, int k)
{
//find the partition
int partition = partitions(arr, low, high);
//if partition value is equal to the kth position, //return value at k.
if (partition == k)
return arr[partition];
//if partition value is less than kth position, //search right side of the array.
else if (partition <k )
return kthSmallest(arr, partition + 1, high, k );
//if partition value is more than kth position, //search left side of the array.
else
return kthSmallest(arr, low, partition - 1, k );
}
//Driver Code
public static void Main(String[] args)
{
int [] array = {10, 4, 5, 8, 6, 11, 26};
int [] arraycopy = {10, 4, 5, 8, 6, 11, 26};
int kPosition = 3;
int length = array.Length;
if (kPosition> length)
{
Console.WriteLine( "Index out of bound" );
}
else
{
//find kth smallest value
Console.WriteLine( "K-th smallest element in array : " +
kthSmallest(arraycopy, 0, length - 1, kPosition - 1));
}
}
}
//This code is contributed by 29AjayKumar
输出如下:
K-th smallest element is 6
重要事项:
- 与快速排序类似, 它在实践中速度很快, 但最坏情况下的性能却很差。它用于
- 分区过程与QuickSort相同, 只是递归代码不同。
- 有一种算法可以找到最坏cas中O(n)中第k个最小元素e, 但QuickSelect的平均效果更好。
相关的C++函数:C++中的std::nth_element
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。