本文概述
给定数组A[]和正整数K,任务是计算数组中总和能被K整除的对的总数。
例子:
Input : A[] = {2, 2, 1, 7, 5, 3}, K = 4
Output : 5
Explanation :
There are five pairs possible whose sum
is divisible by '4' i.e., (2, 2), (1, 7), (7, 5), (1, 3) and (5, 3)
Input : A[] = {5, 9, 36, 74, 52, 31, 42}, K = 3
Output : 7
简单的方法:最简单的方法是遍历数组的每一对, 但使用两个嵌套的for循环并计算总和可被" K"整除的那些对。这种方法的时间复杂度是O(N2)。
高效方法:一种有效的方法是使用哈希技术。我们将根据元素(值mod K)将其分为多个存储桶。当数字除以K时, 余数可以是0、1、2, 最高为(k-1)。所以拿一个数组说频率[]大小为K(用零初始化), 并增加freq [A [i]%K]的值, 以便我们可以计算除以k的余数j的值的数量。
C++
//C++ Program to count pairs
//whose sum divisible by 'K'
#include <bits/stdc++.h>
using namespace std;
//Program to count pairs whose sum divisible
//by 'K'
int countKdivPairs( int A[], int n, int K)
{
//Create a frequency array to count
//occurrences of all remainders when
//divided by K
int freq[K] = { 0 };
//Count occurrences of all remainders
for ( int i = 0; i <n; i++)
++freq[A[i] % K];
//If both pairs are divisible by 'K'
int sum = freq[0] * (freq[0] - 1) /2;
//count for all i and (k-i)
//freq pairs
for ( int i = 1; i <= K /2 && i != (K - i); i++)
sum += freq[i] * freq[K - i];
//If K is even
if (K % 2 == 0)
sum += (freq[K /2] * (freq[K /2] - 1) /2);
return sum;
}
//Driver code
int main()
{
int A[] = { 2, 2, 1, 7, 5, 3 };
int n = sizeof (A) /sizeof (A[0]);
int K = 4;
cout <<countKdivPairs(A, n, K);
return 0;
}
Java
//Java program to count pairs
//whose sum divisible by 'K'
import java.util.*;
class Count {
public static int countKdivPairs( int A[], int n, int K)
{
//Create a frequency array to count
//occurrences of all remainders when
//divided by K
int freq[] = new int [K];
//Count occurrences of all remainders
for ( int i = 0 ; i <n; i++)
++freq[A[i] % K];
//If both pairs are divisible by 'K'
int sum = freq[ 0 ] * (freq[ 0 ] - 1 ) /2 ;
//count for all i and (k-i)
//freq pairs
for ( int i = 1 ; i <= K /2 && i != (K - i); i++)
sum += freq[i] * freq[K - i];
//If K is even
if (K % 2 == 0 )
sum += (freq[K /2 ] * (freq[K /2 ] - 1 ) /2 );
return sum;
}
public static void main(String[] args)
{
int A[] = { 2 , 2 , 1 , 7 , 5 , 3 };
int n = 6 ;
int K = 4 ;
System.out.print(countKdivPairs(A, n, K));
}
}
Python3
# Python3 code to count pairs whose
# sum is divisible by 'K'
# Function to count pairs whose
# sum is divisible by 'K'
def countKdivPairs(A, n, K):
# Create a frequency array to count
# occurrences of all remainders when
# divided by K
freq = [ 0 ] * K
# Count occurrences of all remainders
for i in range (n):
freq[A[i] % K] + = 1
# If both pairs are divisible by 'K'
sum = freq[ 0 ] * (freq[ 0 ] - 1 ) /2 ;
# count for all i and (k-i)
# freq pairs
i = 1
while (i <= K //2 and i ! = (K - i) ):
sum + = freq[i] * freq[K - i]
i + = 1
# If K is even
if ( K % 2 = = 0 ):
sum + = (freq[K //2 ] * (freq[K //2 ] - 1 ) /2 );
return int ( sum )
# Driver code
A = [ 2 , 2 , 1 , 7 , 5 , 3 ]
n = len (A)
K = 4
print (countKdivPairs(A, n, K))
C#
//C# program to count pairs
//whose sum divisible by 'K'
using System;
class Count
{
public static int countKdivPairs( int []A, int n, int K)
{
//Create a frequency array to count
//occurrences of all remainders when
//divided by K
int []freq = new int [K];
//Count occurrences of all remainders
for ( int i = 0; i <n; i++)
++freq[A[i] % K];
//If both pairs are divisible by 'K'
int sum = freq[0] * (freq[0] - 1) /2;
//count for all i and (k-i)
//freq pairs
for ( int i = 1; i <= K /2 && i != (K - i); i++)
sum += freq[i] * freq[K - i];
//If K is even
if (K % 2 == 0)
sum += (freq[K /2] * (freq[K /2] - 1) /2);
return sum;
}
//Driver code
static public void Main ()
{
int []A = { 2, 2, 1, 7, 5, 3 };
int n = 6;
int K = 4;
Console.WriteLine(countKdivPairs(A, n, K));
}
}
//This code is contributed by akt_mit.
PHP
<?php
//PHP Program to count pairs
//whose sum divisible by 'K'
//Program to count pairs whose sum
//divisible by 'K'
function countKdivPairs( $A , $n , $K )
{
//Create a frequency array to count
//occurrences of all remainders when
//divided by K
$freq = array_fill (0, $K , 0);
//Count occurrences of all remainders
for ( $i = 0; $i <$n ; $i ++)
++ $freq [ $A [ $i ] % $K ];
//If both pairs are divisible by 'K'
$sum = (int)( $freq [0] * ( $freq [0] - 1) /2);
//count for all i and (k-i)
//freq pairs
for ( $i = 1; $i <= $K /2 &&
$i != ( $K - $i ); $i ++)
$sum += $freq [ $i ] * $freq [ $K - $i ];
//If K is even
if ( $K % 2 == 0)
$sum += (int)( $freq [(int)( $K /2)] *
( $freq [(int)( $K /2)] - 1) /2);
return $sum ;
}
//Driver code
$A = array ( 2, 2, 1, 7, 5, 3 );
$n = count ( $A );
$K = 4;
echo countKdivPairs( $A , $n , $K );
//This code is contributed by mits
?>
输出:
5
时间复杂度:O(n)
辅助空间:O(1)