本文概述
两个数字的LCM(最小公倍数)是可以除以两个数字的最小数字。
一个简单的解决方法是找出两个数的所有质因数,然后找出两个数中所有因数的并集。最后,返回联合元素的乘积。
一个有效的解决方法是根据以下公式计算两个数字a和b的LCM。
a x b = LCM(a, b) * GCD (a, b)
LCM(a, b) = (a x b) /GCD(a, b)
讨论了求两个数的GCD的函数。使用GCD,我们可以找到LCM。
以下是上述想法的实现:
C ++
//C++ program to find LCM of two numbers
#include <iostream>
using namespace std;
//Recursive function to return gcd of a and b
long long gcd( long long int a, long long int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
//Function to return LCM of two numbers
long long lcm( int a, int b)
{
return (a /gcd(a, b)) * b;
}
//Driver program to test above function
int main()
{
int a = 15, b = 20;
cout <<"LCM of " <<a <<" and "
<<b <<" is " <<lcm(a, b);
return 0;
}
C
//C program to find LCM of two numbers
#include <stdio.h>
//Recursive function to return gcd of a and b
int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
//Function to return LCM of two numbers
int lcm( int a, int b)
{
return (a /gcd(a, b)) * b;
}
//Driver program to test above function
int main()
{
int a = 15, b = 20;
printf ( "LCM of %d and %d is %d " , a, b, lcm(a, b));
return 0;
}
Java
//Java program to find LCM of two numbers.
class Test
{
//Recursive method to return gcd of a and b
static int gcd( int a, int b)
{
if (a == 0 )
return b;
return gcd(b % a, a);
}
//method to return LCM of two numbers
static int lcm( int a, int b)
{
return (a /gcd(a, b)) * b;
}
//Driver method
public static void main(String[] args)
{
int a = 15 , b = 20 ;
System.out.println( "LCM of " + a +
" and " + b +
" is " + lcm(a, b));
}
}
Python3
# Python program to find LCM of two numbers
# Recursive function to return gcd of a and b
def gcd(a, b):
if a = = 0 :
return b
return gcd(b % a, a)
# Function to return LCM of two numbers
def lcm(a, b):
return (a /gcd(a, b)) * b
# Driver program to test above function
a = 15
b = 20
print ( 'LCM of' , a, 'and' , b, 'is' , lcm(a, b))
# This code is contributed by Danish Raza
C#
//C# program to find LCM
//of two numbers.
using System;
class GFG {
//Recursive method to
//return gcd of a and b
static int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
//method to return
//LCM of two numbers
static int lcm( int a, int b)
{
return (a /gcd(a, b)) * b;
}
//Driver method
public static void Main()
{
int a = 15, b = 20;
Console.WriteLine( "LCM of " + a +
" and " + b + " is " + lcm(a, b));
}
}
//This code is contributed by anuj_67.
PHP
<?php
//PHP program to find LCM of two numbers
//Recursive function to
//return gcd of a and b
function gcd( $a , $b )
{
if ( $a == 0)
return $b ;
return gcd( $b % $a , $a );
}
//Function to return LCM
//of two numbers
function lcm( $a , $b )
{
return ( $a /gcd( $a , $b )) * $b ;
}
//Driver Code
$a = 15;
$b = 20;
echo "LCM of " , $a , " and "
, $b , " is " , lcm( $a , $b );
//This code is contributed by anuj_67.
?>
输出如下
LCM of 15 and 20 is 60
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。