算法设计:最大滑动窗口-大小为k的所有子数组的最大值 S2

2021年4月16日18:54:01 发表评论 764 次浏览

本文概述

S1: 最大滑动窗口(大小为k的所有子数组的最大值).

给定一个大小为N和整数K的数组arr,任务是找出每个大小为K的连续子数组的最大值

例子:

输入:arr [] = {1、2、3、1、4、5、2、3、6}, K = 3
输出:3 3 4 5 5 5 6
所有大小为k的相邻子数组均为
{1、2、2 3} => 3
{2, 3, 1} => 3
{3, 1, 4} => 4
{1, 4, 5} => 5
{4, 5, 2} => 5
{5, 2, 3} => 5
{2, 3, 6} => 6
输入:arr [] = {8, 5, 10, 7, 9, 4, 15, 12, 12, 90, 13}, K = 4
输出:10 10 10 15 15 90 90

方法:为了在较小的空间复杂度中解决此问题, 我们可以使用二指针技术.

  • 第一个变量指针遍历子数组并从给定大小中找到最大元素ķ
  • 第二个变量指针标记第一个变量指针的结束索引, 即第(i + K – 1)个索引.
  • 当第一个变量指针到达第二个变量指针的索引时, 该子数组的最大值已被计算并将被打印。
  • 重复该过程, 直到第二个变量指针到达最后一个数组索引为止(即array_size – 1).

下面是上述方法的实现:

C++

//C++ program to find the maximum for each
//and every contiguous subarray of size K
  
#include <bits/stdc++.h>
using namespace std;
  
//Function to find the maximum for each
//and every contiguous subarray of size k
void printKMax( int a[], int n, int k)
{
     //If k = 1, print all elements
     if (k == 1) {
         for ( int i = 0; i <n; i += 1)
             cout <<a[i] <<" " ;
         return ;
     }
  
     //Using p and q as variable pointers
     //where p iterates through the subarray
     //and q marks end of the subarray.
     int p = 0, q = k - 1, t = p, max = a[k - 1];
  
     //Iterating through subarray.
     while (q <= n - 1) {
  
         //Finding max
         //from the subarray.
         if (a

> max) max = a

; p += 1; //Printing max of subarray //and shifting pointers //to next index. if (q == p && p != n) { cout <<max <<" " ; q++; p = ++t; if (q <n) max = a[q]; } } } //Driver Code int main() { int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int n = sizeof (a) /sizeof (a[0]); int K = 3; printKMax(a, n, K); return 0; }

Java

//Java program to find the maximum for each
//and every contiguous subarray of size K
import java.util.*;
  
class GFG{
   
//Function to find the maximum for each
//and every contiguous subarray of size k
static void printKMax( int a[], int n, int k)
{
     //If k = 1, print all elements
     if (k == 1 ) {
         for ( int i = 0 ; i <n; i += 1 )
             System.out.print(a[i]+ " " );
         return ;
     }
   
     //Using p and q as variable pointers
     //where p iterates through the subarray
     //and q marks end of the subarray.
     int p = 0 , q = k - 1 , t = p, max = a[k - 1 ];
   
     //Iterating through subarray.
     while (q <= n - 1 ) {
   
         //Finding max
         //from the subarray.
         if (a

> max) max = a

; p += 1 ; //Printing max of subarray //and shifting pointers //to next index. if (q == p && p != n) { System.out.print(max+ " " ); q++; p = ++t; if (q <n) max = a[q]; } } } //Driver Code public static void main(String[] args) { int a[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }; int n = a.length; int K = 3 ; printKMax(a, n, K); } } //This code is contributed by 29AjayKumar

Python3

# Python3 program to find the maximum for each
# and every contiguous subarray of size K
  
# Function to find the maximum for each
# and every contiguous subarray of size k
def printKMax(a, n, k):
      
     # If k = 1, prall elements
     if (k = = 1 ):
         for i in range (n):
             print (a[i], end = " " );
         return ;
          
     # Using p and q as variable pointers
     # where p iterates through the subarray
     # and q marks end of the subarray.
     p = 0 ;
     q = k - 1 ;
     t = p;
     max = a[k - 1 ];
  
     # Iterating through subarray.
     while (q <= n - 1 ):
  
         # Finding max
         # from the subarray.
         if (a

> max ): max = a

; p + = 1 ; # Printing max of subarray # and shifting pointers # to next index. if (q = = p and p ! = n): print ( max , end = " " ); q + = 1 ; p = t + 1 ; t = p; if (q <n): max = a[q]; # Driver Code if __name__ = = '__main__' : a = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]; n = len (a); K = 3 ; printKMax(a, n, K); # This code is contributed by Princi Singh

C#

//C# program to find the maximum for each
//and every contiguous subarray of size K
using System;
  
class GFG{
    
//Function to find the maximum for each
//and every contiguous subarray of size k
static void printKMax( int []a, int n, int k)
{
     //If k = 1, print all elements
     if (k == 1) {
         for ( int i = 0; i <n; i += 1)
             Console.Write(a[i]+ " " );
         return ;
     }
    
     //Using p and q as variable pointers
     //where p iterates through the subarray
     //and q marks end of the subarray.
     int p = 0, q = k - 1, t = p, max = a[k - 1];
    
     //Iterating through subarray.
     while (q <= n - 1) {
    
         //Finding max
         //from the subarray.
         if (a

> max) max = a

; p += 1; //Printing max of subarray //and shifting pointers //to next index. if (q == p && p != n) { Console.Write(max+ " " ); q++; p = ++t; if (q <n) max = a[q]; } } } //Driver Code public static void Main(String[] args) { int []a = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int n = a.Length; int K = 3; printKMax(a, n, K); } } //This code is contributed by Rajput-Ji

输出如下:

3 4 5 6 7 8 9 10

时间复杂度:O(N * k)

辅助空间复杂度:O(1)


木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: