本文概述
问题:一个骑士被放置在一个空棋盘的第一块上, 并且根据国际象棋的规则移动, 必须对每个广场精确地访问一次。
以下是Knight覆盖所有单元的示例路径。下面的网格表示一个8 x 8格的棋盘。单元格中的数字表示骑士的移动次数。
我们已经讨论过回溯算法, 解决骑士之旅。在这篇文章中沃恩斯多夫的启发式讨论。
Warnsdorff的规则:
- 我们可以从骑士在板上的任何初始位置开始。
- 我们总是以最小的程度(最少的未访问相邻数)移动到相邻的未访问正方形。
该算法也可以更普遍地应用于任何图形。
一些定义:
- 如果P可以通过一个骑士的动作移动到Q, 并且尚未访问Q, 则可以从P位置访问Q。
- 位置P的可访问性是可从P访问的位置数。
算法:
- 将P设置为板上的随机初始位置
- 用移动号" 1"将板标记在P上
- 对于从2到板上的平方数的每个移动编号, 请执行以下操作:
- 令S为可从P访问的位置集合。
- 将P设置为S中具有最小辅助功能的位置
- 用当前移动编号将板标记在P上
- 返回标有标记的木板-每个方块都会标有其访问所在的移动编号。
下面是上述算法的实现。
C ++
//C++ program to for Kinight's tour problem usin
//Warnsdorff's algorithm
#include <bits/stdc++.h>
#define N 8
//Move pattern on basis of the change of
//x coordinates and y coordinates respectively
static int cx[N] = {1, 1, 2, 2, -1, -1, -2, -2};
static int cy[N] = {2, -2, 1, -1, 2, -2, 1, -1};
//function restricts the knight to remain within
//the 8x8 chessboard
bool limits( int x, int y)
{
return ((x>= 0 && y>= 0) && (x <N && y <N));
}
/* Checks whether a square is valid and empty or not */
bool isempty( int a[], int x, int y)
{
return (limits(x, y)) && (a[y*N+x] <0);
}
/* Returns the number of empty squares adjacent
to (x, y) */
int getDegree( int a[], int x, int y)
{
int count = 0;
for ( int i = 0; i <N; ++i)
if (isempty(a, (x + cx[i]), (y + cy[i])))
count++;
return count;
}
//Picks next point using Warnsdorff's heuristic.
//Returns false if it is not possible to pick
//next point.
bool nextMove( int a[], int *x, int *y)
{
int min_deg_idx = -1, c, min_deg = (N+1), nx, ny;
//Try all N adjacent of (*x, *y) starting
//from a random adjacent. Find the adjacent
//with minimum degree.
int start = rand ()%N;
for ( int count = 0; count <N; ++count)
{
int i = (start + count)%N;
nx = *x + cx[i];
ny = *y + cy[i];
if ((isempty(a, nx, ny)) &&
(c = getDegree(a, nx, ny)) <min_deg)
{
min_deg_idx = i;
min_deg = c;
}
}
//IF we could not find a next cell
if (min_deg_idx == -1)
return false ;
//Store coordinates of next point
nx = *x + cx[min_deg_idx];
ny = *y + cy[min_deg_idx];
//Mark next move
a[ny*N + nx] = a[(*y)*N + (*x)]+1;
//Update next point
*x = nx;
*y = ny;
return true ;
}
/* displays the chessboard with all the
legal knight's moves */
void print( int a[])
{
for ( int i = 0; i <N; ++i)
{
for ( int j = 0; j <N; ++j)
printf ( "%d\t" , a[j*N+i]);
printf ( "\n" );
}
}
/* checks its neighbouring sqaures */
/* If the knight ends on a square that is one
knight's move from the beginning square, then tour is closed */
bool neighbour( int x, int y, int xx, int yy)
{
for ( int i = 0; i <N; ++i)
if (((x+cx[i]) == xx)&&((y + cy[i]) == yy))
return true ;
return false ;
}
/* Generates the legal moves using warnsdorff's
heuristics. Returns false if not possible */
bool findClosedTour()
{
//Filling up the chessboard matrix with -1's
int a[N*N];
for ( int i = 0; i<N*N; ++i)
a[i] = -1;
//Randome initial position
int sx = rand ()%N;
int sy = rand ()%N;
//Current points are same as initial points
int x = sx, y = sy;
a[y*N+x] = 1; //Mark first move.
//Keep picking next points using
//Warnsdorff's heuristic
for ( int i = 0; i <N*N-1; ++i)
if (nextMove(a, &x, &y) == 0)
return false ;
//Check if tour is closed (Can end
//at starting point)
if (!neighbour(x, y, sx, sy))
return false ;
print(a);
return true ;
}
//Driver code
int main()
{
//To make sure that different random
//initial positions are picked.
srand ( time (NULL));
//While we don't get a solution
while (!findClosedTour())
{
;
}
return 0;
}
Java
//Java program to for Kinight's tour problem using
//Warnsdorff's algorithm
import java.util.concurrent.ThreadLocalRandom;
class GFG
{
public static final int N = 8 ;
//Move pattern on basis of the change of
//x coordinates and y coordinates respectively
public static final int cx[] = { 1 , 1 , 2 , 2 , - 1 , - 1 , - 2 , - 2 };
public static final int cy[] = { 2 , - 2 , 1 , - 1 , 2 , - 2 , 1 , - 1 };
//function restricts the knight to remain within
//the 8x8 chessboard
boolean limits( int x, int y)
{
return ((x>= 0 && y>= 0 ) &&
(x <N && y <N));
}
/* Checks whether a square is valid and
empty or not */
boolean isempty( int a[], int x, int y)
{
return (limits(x, y)) && (a[y * N + x] <0 );
}
/* Returns the number of empty squares
adjacent to (x, y) */
int getDegree( int a[], int x, int y)
{
int count = 0 ;
for ( int i = 0 ; i <N; ++i)
if (isempty(a, (x + cx[i]), (y + cy[i])))
count++;
return count;
}
//Picks next point using Warnsdorff's heuristic.
//Returns false if it is not possible to pick
//next point.
Cell nextMove( int a[], Cell cell)
{
int min_deg_idx = - 1 , c, min_deg = (N + 1 ), nx, ny;
//Try all N adjacent of (*x, *y) starting
//from a random adjacent. Find the adjacent
//with minimum degree.
int start = ThreadLocalRandom.current().nextInt( 1000 ) % N;
for ( int count = 0 ; count <N; ++count)
{
int i = (start + count) % N;
nx = cell.x + cx[i];
ny = cell.y + cy[i];
if ((isempty(a, nx, ny)) &&
(c = getDegree(a, nx, ny)) <min_deg)
{
min_deg_idx = i;
min_deg = c;
}
}
//IF we could not find a next cell
if (min_deg_idx == - 1 )
return null ;
//Store coordinates of next point
nx = cell.x + cx[min_deg_idx];
ny = cell.y + cy[min_deg_idx];
//Mark next move
a[ny * N + nx] = a[(cell.y) * N +
(cell.x)] + 1 ;
//Update next point
cell.x = nx;
cell.y = ny;
return cell;
}
/* displays the chessboard with all the
legal knight's moves */
void print( int a[])
{
for ( int i = 0 ; i <N; ++i)
{
for ( int j = 0 ; j <N; ++j)
System.out.printf( "%d\t" , a[j * N + i]);
System.out.printf( "\n" );
}
}
/* checks its neighbouring sqaures */
/* If the knight ends on a square that is one
knight's move from the beginning square, then tour is closed */
boolean neighbour( int x, int y, int xx, int yy)
{
for ( int i = 0 ; i <N; ++i)
if (((x + cx[i]) == xx) &&
((y + cy[i]) == yy))
return true ;
return false ;
}
/* Generates the legal moves using warnsdorff's
heuristics. Returns false if not possible */
boolean findClosedTour()
{
//Filling up the chessboard matrix with -1's
int a[] = new int [N * N];
for ( int i = 0 ; i <N * N; ++i)
a[i] = - 1 ;
//initial position
int sx = 3 ;
int sy = 2 ;
//Current points are same as initial points
Cell cell = new Cell(sx, sy);
a[cell.y * N + cell.x] = 1 ; //Mark first move.
//Keep picking next points using
//Warnsdorff's heuristic
Cell ret = null ;
for ( int i = 0 ; i <N * N - 1 ; ++i)
{
ret = nextMove(a, cell);
if (ret == null )
return false ;
}
//Check if tour is closed (Can end
//at starting point)
if (!neighbour(ret.x, ret.y, sx, sy))
return false ;
print(a);
return true ;
}
//Driver Code
public static void main(String[] args)
{
//While we don't get a solution
while (! new GFG().findClosedTour())
{
;
}
}
}
class Cell
{
int x;
int y;
public Cell( int x, int y)
{
this .x = x;
this .y = y;
}
}
//This code is contributed by SaeedZarinfam
输出如下:
59 14 63 32 1 16 19 34
62 31 60 15 56 33 2 17
13 58 55 64 49 18 35 20
30 61 42 57 54 51 40 3
43 12 53 50 41 48 21 36
26 29 44 47 52 39 4 7
11 46 27 24 9 6 37 22
28 25 10 45 38 23 8 5
哈密顿路径问题通常是NP难的。在实践中, 沃恩斯多夫的启发式方法成功地找到了线性时间的解决方案。
你知道吗?
"在8×8的板上, 恰好有26, 534, 728, 821, 064个定向封闭巡回路线(即, 沿着同一路径沿相反方向行驶的两个巡回路线分别计算在内, 旋转和反射也是如此)。无方向的封闭式游览的数量是该数字的一半, 因为每个游览都可以反向追踪!"
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。