Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

2021年4月7日18:00:05 发表评论 1,021 次浏览

本文概述

我们建议阅读以下两篇文章, 作为这篇文章Dijkstra算法的先决条件。

1. 贪婪算法|S7(Dijkstra的最短路径算法)

2. 图及其表示

我们已经讨论过Dijkstra算法及其图形邻接矩阵表示的实现。矩阵表示的时间复杂度为O(V ^ 2)。在这篇文章中, 讨论了用于邻接表表示的O(ELogV)算法。

在之前的文章中讨论过,在Dijkstra算法中,维护了两个集合,一个集合包含已经包含在SPT(最短路径树)中的顶点列表,另一个集合包含还没有包含的顶点。利用邻接表表示,使用BFS可以在O(V+E)时间内遍历图的所有顶点。其思想是使用BFS遍历graph的所有顶点,并使用最小堆存储SPT中未包含的顶点(或最短距离尚未最终确定的顶点)。最小堆被用作优先队列,以从尚未包含的顶点集获得最小距离顶点。提取- Min和减小-key值等操作的时间复杂度为O(LogV)。

以下是详细步骤。

1)创建大小为V的最小堆, 其中V是给定图中的顶点数。最小堆的每个节点都包含顶点数和顶点的距离值。

2)以源顶点为根初始化Min Heap(分配给源顶点的距离值为0)。分配给所有其他顶点的距离值为INF(无限)。

3)当Min Heap不为空时, 请执行以下操作

…..a)从最小堆中提取具有最小距离值节点的顶点。令提取的顶点为u。

…..b)对于u的每个相邻顶点v, 检查v是否在Min Heap中。如果v在"最小堆"中, 并且距离值大于u-v的权重加上u的距离值, 则更新v的距离值。

让我们用下面的例子来理解。让给定的源顶点为0

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

最初, 对于所有其他顶点, 源顶点的距离值为0, INF为无穷大。因此, 从"最小堆"中提取源顶点, 并更新与0(1和7)相邻的顶点的距离值。最小堆包含除顶点0以外的所有顶点。

绿色的顶点是已确定最小距离且不在最小堆中的顶点

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

由于顶点1的距离值在最小堆中的所有节点中最小, 因此从最小堆中提取顶点, 并更新与1相邻的顶点的距离值(如果顶点在最小堆中并且到1的距离小于以前的距离)。最小堆包含除顶点0和1之外的所有顶点。

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

从最小堆中选取最小距离值的顶点。选择了顶点7。因此, 最小堆现在包含除0、1和7以外的所有顶点。更新相邻顶点7的距离值。顶点6和8的距离值变得有限(分别为15和9)。

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

选择与最小堆的距离最小的顶点。选择了顶点6。因此, 最小堆现在包含除0、1、7和6以外的所有顶点。更新相邻顶点6的距离值。更新顶点5和8的距离值。

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

重复上述步骤, 直到最小堆不为空为止。最后, 我们得到以下最短路径树。

Dijkstra算法:邻接表表示的算法实现|贪婪算法S8

Dijkstra的最短路径算法,使用邻接表表示的贪婪算法实现代码如下:

C ++

//C /C++ program for Dijkstra's
//shortest path algorithm for adjacency
//list representation of graph
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
 
//A structure to represent a
//node in adjacency list
struct AdjListNode
{
     int dest;
     int weight;
     struct AdjListNode* next;
};
 
//A structure to represent
//an adjacency list
struct AdjList
{
     
    //Pointer to head node of list
    struct AdjListNode *head;
};
 
//A structure to represent a graph.
//A graph is an array of adjacency lists.
//Size of array will be V (number of
//vertices in graph)
struct Graph
{
     int V;
     struct AdjList* array;
};
 
//A utility function to create
//a new adjacency list node
struct AdjListNode* newAdjListNode(
                    int dest, int weight)
{
     struct AdjListNode* newNode =
             ( struct AdjListNode*)
       malloc ( sizeof ( struct AdjListNode));
     newNode->dest = dest;
     newNode->weight = weight;
     newNode->next = NULL;
     return newNode;
}
 
//A utility function that creates
//a graph of V vertices
struct Graph* createGraph( int V)
{
     struct Graph* graph = ( struct Graph*)
             malloc ( sizeof ( struct Graph));
     graph->V = V;
 
     //Create an array of adjacency lists. 
     //Size of array will be V
     graph->array = ( struct AdjList*)
        malloc (V * sizeof ( struct AdjList));
 
     //Initialize each adjacency list
     //as empty by making head as NULL
     for ( int i = 0; i <V; ++i)
         graph->array[i].head = NULL;
 
     return graph;
}
 
//Adds an edge to an undirected graph
void addEdge( struct Graph* graph, int src, int dest, int weight)
{
     //Add an edge from src to dest. 
     //A new node is added to the adjacency
     //list of src.  The node is
     //added at the beginning
     struct AdjListNode* newNode =
             newAdjListNode(dest, weight);
     newNode->next = graph->array[src].head;
     graph->array[src].head = newNode;
 
     //Since graph is undirected, //add an edge from dest to src also
     newNode = newAdjListNode(src, weight);
     newNode->next = graph->array[dest].head;
     graph->array[dest].head = newNode;
}
 
//Structure to represent a min heap node
struct MinHeapNode
{
     int  v;
     int dist;
};
 
//Structure to represent a min heap
struct MinHeap
{
     
     //Number of heap nodes present currently
     int size;    
   
     //Capacity of min heap
     int capacity; 
   
     //This is needed for decreaseKey()
     int *pos;   
     struct MinHeapNode **array;
};
 
//A utility function to create a
//new Min Heap Node
struct MinHeapNode* newMinHeapNode( int v, int dist)
{
     struct MinHeapNode* minHeapNode =
            ( struct MinHeapNode*)
       malloc ( sizeof ( struct MinHeapNode));
     minHeapNode->v = v;
     minHeapNode->dist = dist;
     return minHeapNode;
}
 
//A utility function to create a Min Heap
struct MinHeap* createMinHeap( int capacity)
{
     struct MinHeap* minHeap =
          ( struct MinHeap*)
       malloc ( sizeof ( struct MinHeap));
     minHeap->pos = ( int *) malloc (
             capacity * sizeof ( int ));
     minHeap->size = 0;
     minHeap->capacity = capacity;
     minHeap->array =
          ( struct MinHeapNode**)
                  malloc (capacity *
        sizeof ( struct MinHeapNode*));
     return minHeap;
}
 
//A utility function to swap two
//nodes of min heap.
//Needed for min heapify
void swapMinHeapNode( struct MinHeapNode** a, struct MinHeapNode** b)
{
     struct MinHeapNode* t = *a;
     *a = *b;
     *b = t;
}
 
//A standard function to
//heapify at given idx
//This function also updates
//position of nodes when they are swapped.
//Position is needed for decreaseKey()
void minHeapify( struct MinHeap* minHeap, int idx)
{
     int smallest, left, right;
     smallest = idx;
     left = 2 * idx + 1;
     right = 2 * idx + 2;
 
     if (left <minHeap->size &&
         minHeap->array[left]->dist <
          minHeap->array[smallest]->dist )
       smallest = left;
 
     if (right <minHeap->size &&
         minHeap->array[right]->dist <
          minHeap->array[smallest]->dist )
       smallest = right;
 
     if (smallest != idx)
     {
         //The nodes to be swapped in min heap
         MinHeapNode *smallestNode =
              minHeap->array[smallest];
         MinHeapNode *idxNode =
                  minHeap->array[idx];
 
         //Swap positions
         minHeap->pos[smallestNode->v] = idx;
         minHeap->pos[idxNode->v] = smallest;
 
         //Swap nodes
         swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
 
         minHeapify(minHeap, smallest);
     }
}
 
//A utility function to check if
//the given minHeap is ampty or not
int isEmpty( struct MinHeap* minHeap)
{
     return minHeap->size == 0;
}
 
//Standard function to extract
//minimum node from heap
struct MinHeapNode* extractMin( struct MinHeap*
                                    minHeap)
{
     if (isEmpty(minHeap))
         return NULL;
 
     //Store the root node
     struct MinHeapNode* root =
                    minHeap->array[0];
 
     //Replace root node with last node
     struct MinHeapNode* lastNode =
          minHeap->array[minHeap->size - 1];
     minHeap->array[0] = lastNode;
 
     //Update position of last node
     minHeap->pos[root->v] = minHeap->size-1;
     minHeap->pos[lastNode->v] = 0;
 
     //Reduce heap size and heapify root
     --minHeap->size;
     minHeapify(minHeap, 0);
 
     return root;
}
 
//Function to decreasy dist value
//of a given vertex v. This function
//uses pos[] of min heap to get the
//current index of node in min heap
void decreaseKey( struct MinHeap* minHeap, int v, int dist)
{
     //Get the index of v in  heap array
     int i = minHeap->pos[v];
 
     //Get the node and update its dist value
     minHeap->array[i]->dist = dist;
 
     //Travel up while the complete
     //tree is not hepified.
     //This is a O(Logn) loop
     while (i && minHeap->array[i]->dist <
            minHeap->array[(i - 1) /2]->dist)
     {
         //Swap this node with its parent
         minHeap->pos[minHeap->array[i]->v] =
                                       (i-1)/2;
         minHeap->pos[minHeap->array[
                              (i-1)/2]->v] = i;
         swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) /2]);
 
         //move to parent index
         i = (i - 1) /2;
     }
}
 
//A utility function to check if a given vertex
//'v' is in min heap or not
bool isInMinHeap( struct MinHeap *minHeap, int v)
{
    if (minHeap->pos[v] <minHeap->size)
      return true ;
    return false ;
}
 
//A utility function used to print the solution
void printArr( int dist[], int n)
{
     printf ( "Vertex   Distance from Source\n" );
     for ( int i = 0; i <n; ++i)
         printf ( "%d \t\t %d\n" , i, dist[i]);
}
 
//The main function that calulates
//distances of shortest paths from src to all
//vertices. It is a O(ELogV) function
void dijkstra( struct Graph* graph, int src)
{
     
     //Get the number of vertices in graph
     int V = graph->V;
   
     //dist values used to pick
     //minimum weight edge in cut
     int dist[V];    
 
     //minHeap represents set E
     struct MinHeap* minHeap = createMinHeap(V);
 
     //Initialize min heap with all
     //vertices. dist value of all vertices
     for ( int v = 0; v <V; ++v)
     {
         dist[v] = INT_MAX;
         minHeap->array[v] = newMinHeapNode(v, dist[v]);
         minHeap->pos[v] = v;
     }
 
     //Make dist value of src vertex
     //as 0 so that it is extracted first
     minHeap->array[src] =
           newMinHeapNode(src, dist[src]);
     minHeap->pos[src]   = src;
     dist[src] = 0;
     decreaseKey(minHeap, src, dist[src]);
 
     //Initially size of min heap is equal to V
     minHeap->size = V;
 
     //In the followin loop, //min heap contains all nodes
     //whose shortest distance
     //is not yet finalized.
     while (!isEmpty(minHeap))
     {
         //Extract the vertex with
         //minimum distance value
         struct MinHeapNode* minHeapNode =
                      extractMin(minHeap);
       
         //Store the extracted vertex number
         int u = minHeapNode->v;
 
         //Traverse through all adjacent
         //vertices of u (the extracted
         //vertex) and update
         //their distance values
         struct AdjListNode* pCrawl =
                      graph->array[u].head;
         while (pCrawl != NULL)
         {
             int v = pCrawl->dest;
 
             //If shortest distance to v is
             //not finalized yet, and distance to v
             //through u is less than its
             //previously calculated distance
             if (isInMinHeap(minHeap, v) &&
                       dist[u] != INT_MAX &&
               pCrawl->weight + dist[u] <dist[v])
             {
                 dist[v] = dist[u] + pCrawl->weight;
 
                 //update distance
                 //value in min heap also
                 decreaseKey(minHeap, v, dist[v]);
             }
             pCrawl = pCrawl->next;
         }
     }
 
     //print the calculated shortest distances
     printArr(dist, V);
}
 
 
//Driver program to test above functions
int main()
{
     //create the graph given in above fugure
     int V = 9;
     struct Graph* graph = createGraph(V);
     addEdge(graph, 0, 1, 4);
     addEdge(graph, 0, 7, 8);
     addEdge(graph, 1, 2, 8);
     addEdge(graph, 1, 7, 11);
     addEdge(graph, 2, 3, 7);
     addEdge(graph, 2, 8, 2);
     addEdge(graph, 2, 5, 4);
     addEdge(graph, 3, 4, 9);
     addEdge(graph, 3, 5, 14);
     addEdge(graph, 4, 5, 10);
     addEdge(graph, 5, 6, 2);
     addEdge(graph, 6, 7, 1);
     addEdge(graph, 6, 8, 6);
     addEdge(graph, 7, 8, 7);
 
     dijkstra(graph, 0);
 
     return 0;
}

python

# A Python program for Dijkstra's shortest
# path algorithm for adjacency
# list representation of graph
 
from collections import defaultdict
import sys
 
class Heap():
 
     def __init__( self ):
         self .array = []
         self .size = 0
         self .pos = []
 
     def newMinHeapNode( self , v, dist):
         minHeapNode = [v, dist]
         return minHeapNode
 
     # A utility function to swap two nodes
     # of min heap. Needed for min heapify
     def swapMinHeapNode( self , a, b):
         t = self .array[a]
         self .array[a] = self .array[b]
         self .array[b] = t
 
     # A standard function to heapify at given idx
     # This function also updates position of nodes
     # when they are swapped.Position is needed
     # for decreaseKey()
     def minHeapify( self , idx):
         smallest = idx
         left = 2 * idx + 1
         right = 2 * idx + 2
 
         if left <self .size and
            self .array[left][ 1 ] \
             <self .array[smallest][ 1 ]:
             smallest = left
 
         if right <self .size and
            self .array[right][ 1 ]\
             <self .array[smallest][ 1 ]:
             smallest = right
 
         # The nodes to be swapped in min
         # heap if idx is not smallest
         if smallest ! = idx:
 
             # Swap positions
             self .pos[ self .array[smallest][ 0 ]]
                                        = idx
             self .pos[ self .array[idx][ 0 ]] =
                                      smallest
 
             # Swap nodes
             self .swapMinHeapNode(smallest, idx)
 
             self .minHeapify(smallest)
 
     # Standard function to extract minimum
     # node from heap
     def extractMin( self ):
 
         # Return NULL wif heap is empty
         if self .isEmpty() = = True :
             return
 
         # Store the root node
         root = self .array[ 0 ]
 
         # Replace root node with last node
         lastNode = self .array[ self .size - 1 ]
         self .array[ 0 ] = lastNode
 
         # Update position of last node
         self .pos[lastNode[ 0 ]] = 0
         self .pos[root[ 0 ]] = self .size - 1
 
         # Reduce heap size and heapify root
         self .size - = 1
         self .minHeapify( 0 )
 
         return root
 
     def isEmpty( self ):
         return True if self .size = = 0 else False
 
     def decreaseKey( self , v, dist):
 
         # Get the index of v in  heap array
 
         i = self .pos[v]
 
         # Get the node and update its dist value
         self .array[i][ 1 ] = dist
 
         # Travel up while the complete tree is
         # not hepified. This is a O(Logn) loop
         while i> 0 and self .array[i][ 1 ] <
                   self .array[(i - 1 ) /2 ][ 1 ]:
 
             # Swap this node with its parent
             self .pos[ self .array[i][ 0 ] ] = (i - 1 ) /2
             self .pos[ self .array[(i - 1 ) /2 ][ 0 ] ] = i
             self .swapMinHeapNode(i, (i - 1 ) /2 )
 
             # move to parent index
             i = (i - 1 ) /2 ;
 
     # A utility function to check if a given
     # vertex 'v' is in min heap or not
     def isInMinHeap( self , v):
 
         if self .pos[v] <self .size:
             return True
         return False
 
 
def printArr(dist, n):
     print "Vertex\tDistance from source"
     for i in range (n):
         print "%d\t\t%d" % (i, dist[i])
 
 
class Graph():
 
     def __init__( self , V):
         self .V = V
         self .graph = defaultdict( list )
 
     # Adds an edge to an undirected graph
     def addEdge( self , src, dest, weight):
 
         # Add an edge from src to dest.  A new node
         # is added to the adjacency list of src. The
         # node is added at the beginning. The first
         # element of the node has the destination
         # and the second elements has the weight
         newNode = [dest, weight]
         self .graph[src].insert( 0 , newNode)
 
         # Since graph is undirected, add an edge
         # from dest to src also
         newNode = [src, weight]
         self .graph[dest].insert( 0 , newNode)
 
     # The main function that calulates distances
     # of shortest paths from src to all vertices.
     # It is a O(ELogV) function
     def dijkstra( self , src):
 
         V = self .V  # Get the number of vertices in graph
         dist = []   # dist values used to pick minimum
                     # weight edge in cut
 
         # minHeap represents set E
         minHeap = Heap()
 
         #  Initialize min heap with all vertices.
         # dist value of all vertices
         for v in range (V):
             dist.append(sys.maxint)
             minHeap.array.append( minHeap.
                                 newMinHeapNode(v, dist[v]))
             minHeap.pos.append(v)
 
         # Make dist value of src vertex as 0 so
         # that it is extracted first
         minHeap.pos[src] = src
         dist[src] = 0
         minHeap.decreaseKey(src, dist[src])
 
         # Initially size of min heap is equal to V
         minHeap.size = V;
 
         # In the following loop, # min heap contains all nodes
         # whose shortest distance is not yet finalized.
         while minHeap.isEmpty() = = False :
 
             # Extract the vertex
             # with minimum distance value
             newHeapNode = minHeap.extractMin()
             u = newHeapNode[ 0 ]
 
             # Traverse through all adjacent vertices of
             # u (the extracted vertex) and update their
             # distance values
             for pCrawl in self .graph[u]:
 
                 v = pCrawl[ 0 ]
 
                 # If shortest distance to v is not finalized
                 # yet, and distance to v through u is less
                 # than its previously calculated distance
                 if minHeap.isInMinHeap(v) and
                      dist[u] ! = sys.maxint and \
                    pCrawl[ 1 ] + dist[u] <dist[v]:
                         dist[v] = pCrawl[ 1 ] + dist[u]
 
                         # update distance value
                         # in min heap also
                         minHeap.decreaseKey(v, dist[v])
 
         printArr(dist, V)
 
 
# Driver program to test the above functions
graph = Graph( 9 )
graph.addEdge( 0 , 1 , 4 )
graph.addEdge( 0 , 7 , 8 )
graph.addEdge( 1 , 2 , 8 )
graph.addEdge( 1 , 7 , 11 )
graph.addEdge( 2 , 3 , 7 )
graph.addEdge( 2 , 8 , 2 )
graph.addEdge( 2 , 5 , 4 )
graph.addEdge( 3 , 4 , 9 )
graph.addEdge( 3 , 5 , 14 )
graph.addEdge( 4 , 5 , 10 )
graph.addEdge( 5 , 6 , 2 )
graph.addEdge( 6 , 7 , 1 )
graph.addEdge( 6 , 8 , 6 )
graph.addEdge( 7 , 8 , 7 )
graph.dijkstra( 0 )
 
# This code is contributed by Divyanshu Mehta

输出如下:

Vertex   Distance from Source
0                0
1                4
2                12
3                19
4                21
5                11
6                9
7                8
8                14

Dijkstra算法时间复杂度:上面的代码/算法的时间复杂度看起来是O(V ^ 2), 因为有两个嵌套的while循环。如果仔细观察, 可以观察到内部循环中的语句执行了O(V + E)次(类似于BFS)。内部循环具有reduceKey()操作, 该操作需要O(LogV)时间。因此, 总体时间复杂度为O(E + V)* O(LogV), 即O((E + V)* LogV)= O(ELogV)

请注意, 以上代码将Binary Heap用于Priority Queue实现。使用斐波那契堆可以将时间复杂度降低到O(E + VLogV)。原因是, 斐波那契堆需要O(1)时间来进行减键操作, 而二进制堆需要O(Logn)时间。该算法是一个贪婪算法,使用优先队列是该类型算法的典型形式。

Dijkstra的最短路径算法笔记:

  1. 该代码计算最短距离, 但不计算路径信息。我们可以创建一个父数组, 在距离更新时更新父数组(例如总理的实施), 并使用它显示从源到不同顶点的最短路径。
  2. 该代码用于无向图, 相同的dijekstra函数也可用于有向图。
  3. 该代码查找从源到所有顶点的最短距离。如果我们在最短的距离只关心从源到单个目标, 我们可以break for循环时所拾取最小距离顶点等于目标(算法的步骤3.A)。
  4. Dijkstra算法不适用于负边缘为负的图表。对于负负边的图形, Bellman–Ford算法可以使用, 我们将在单独的文章中进行讨论。
    Dijkstra最短路径算法中的打印路径 
    Dijkstra使用STL中的集合的最短路径算法

参考文献:

Clifford Stein, Thomas H.Cormen, Charles E.Leiserson, Ronald L.

Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani的算法

如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: