本文概述
给定两个正整数数组X []和Y [], 找到对数, 使得x ^ y > y ^ x其中x是X []的元素, y是Y []的元素。
例子:
输入:X [] = {2, 1, 6}, Y = {1, 5}
输出:3
说明:总共有3对, 其中pow(x, y)大于pow(y, x)对是( 2, 1), (2、5)和(6, 1)
输入:X [] = {10, 19, 18}, Y [] = {11, 15, 9}
输出:2
说明:总共2对, 其中pow(x, y)大于pow(y, x)对是(10, 11)和(10, 15)
蛮力解决方案是考虑X []和Y []的每个元素, 并检查给定条件是否满足。
以下是基于蛮力解决方案的C ++代码。
Python3
def countPairsBruteForce(X, Y, m, n):
ans = 0
for i in range (m):
for j in range (n):
if ( pow (X[i], Y[j]) > pow (Y[j], X[i])):
ans + = 1
return ans
# This code is contributed by shubhamsingh10
C ++
int countPairsBruteForce( int X[], int Y[], int m, int n)
{
int ans = 0;
for ( int i = 0; i < m; i++)
for ( int j = 0; j < n; j++)
if ( pow (X[i], Y[j]) > pow (Y[j], X[i]))
ans++;
return ans;
}
时间复杂度:O(M * N)其中中号和ñ是给定数组的大小。
高效的解决方案:
这个问题可以解决
O(nLogn + mLogn)
时间。诀窍是, 如果
y> x
然后
x ^ y> y ^ x
除了一些例外。
以下是基于此技巧的简单步骤。
- 排序数组Y []。
- 对于X []中的每个x, 使用以下公式找到Y []中大于x的最小数字的索引idx(也称为x的ceil)二进制搜索或者我们可以使用内置功能upper_bound()在算法库中。
- idx之后的所有数字都满足该关系, 因此只需将(n-idx)添加到计数中即可。
基本案例和例外:
以下是X []中的x和Y []中的y的例外
- 如果x = 0, 则此x的对数为0。
- 如果x = 1, 则此x的对数等于Y []中的0s数。
- x小于y表示x ^ y大于y ^ x。
- x = 2, y = 3或4
- x = 3, y = 2
注意, 不存在x = 4和y = 2的情况
下图以表格形式显示了所有例外情况。值1表示对应的(x, y)形成有效对。
在下面的实现中, 我们对Y数组进行预处理, 并对其中的0、1、2、3和4进行计数, 以便我们可以在恒定时间内处理所有异常。数组NoOfY []用于存储计数。
下面是上述方法的实现:
C ++
// C++ program to finds the number of pairs (x, y)
// in an array such that x^y > y^x
#include<bits/stdc++.h>
using namespace std;
// Function to return count of pairs with x as one element
// of the pair. It mainly looks for all values in Y[] where
// x ^ Y[i] > Y[i] ^ x
int count( int x, int Y[], int n, int NoOfY[])
{
// If x is 0, then there cannot be any value in Y such that
// x^Y[i] > Y[i]^x
if (x == 0) return 0;
// If x is 1, then the number of pais is equal to number of
// zeroes in Y[]
if (x == 1) return NoOfY[0];
// Find number of elements in Y[] with values greater than x
// upper_bound() gets address of first greater element in Y[0..n-1]
int * idx = upper_bound(Y, Y + n, x);
int ans = (Y + n) - idx;
// If we have reached here, then x must be greater than 1, // increase number of pairs for y=0 and y=1
ans += (NoOfY[0] + NoOfY[1]);
// Decrease number of pairs for x=2 and (y=4 or y=3)
if (x == 2) ans -= (NoOfY[3] + NoOfY[4]);
// Increase number of pairs for x=3 and y=2
if (x == 3) ans += NoOfY[2];
return ans;
}
// Function to return count of pairs (x, y) such that
// x belongs to X[], y belongs to Y[] and x^y > y^x
int countPairs( int X[], int Y[], int m, int n)
{
// To store counts of 0, 1, 2, 3 and 4 in array Y
int NoOfY[5] = {0};
for ( int i = 0; i < n; i++)
if (Y[i] < 5)
NoOfY[Y[i]]++;
// Sort Y[] so that we can do binary search in it
sort(Y, Y + n);
int total_pairs = 0; // Initialize result
// Take every element of X and count pairs with it
for ( int i=0; i<m; i++)
total_pairs += count(X[i], Y, n, NoOfY);
return total_pairs;
}
// Driver program
int main()
{
int X[] = {2, 1, 6};
int Y[] = {1, 5};
int m = sizeof (X)/ sizeof (X[0]);
int n = sizeof (Y)/ sizeof (Y[0]);
cout << "Total pairs = " << countPairs(X, Y, m, n);
return 0;
}
Java
// Java program to finds number of pairs (x, y)
// in an array such that x^y > y^x
import java.util.Arrays;
class Test
{
// Function to return count of pairs with x as one element
// of the pair. It mainly looks for all values in Y[] where
// x ^ Y[i] > Y[i] ^ x
static int count( int x, int Y[], int n, int NoOfY[])
{
// If x is 0, then there cannot be any value in Y such that
// x^Y[i] > Y[i]^x
if (x == 0 ) return 0 ;
// If x is 1, then the number of pais is equal to number of
// zeroes in Y[]
if (x == 1 ) return NoOfY[ 0 ];
// Find number of elements in Y[] with values greater than x
// getting upperbound of x with binary search
int idx = Arrays.binarySearch(Y, x);
int ans;
if (idx < 0 ){
idx = Math.abs(idx+ 1 );
ans = Y.length - idx;
}
else {
while (idx<n && Y[idx]==x) {
idx++;
}
ans = Y.length - idx;
}
// If we have reached here, then x must be greater than 1, // increase number of pairs for y=0 and y=1
ans += (NoOfY[ 0 ] + NoOfY[ 1 ]);
// Decrease number of pairs for x=2 and (y=4 or y=3)
if (x == 2 ) ans -= (NoOfY[ 3 ] + NoOfY[ 4 ]);
// Increase number of pairs for x=3 and y=2
if (x == 3 ) ans += NoOfY[ 2 ];
return ans;
}
// Function to returns count of pairs (x, y) such that
// x belongs to X[], y belongs to Y[] and x^y > y^x
static int countPairs( int X[], int Y[], int m, int n)
{
// To store counts of 0, 1, 2, 3 and 4 in array Y
int NoOfY[] = new int [ 5 ];
for ( int i = 0 ; i < n; i++)
if (Y[i] < 5 )
NoOfY[Y[i]]++;
// Sort Y[] so that we can do binary search in it
Arrays.sort(Y);
int total_pairs = 0 ; // Initialize result
// Take every element of X and count pairs with it
for ( int i= 0 ; i<m; i++)
total_pairs += count(X[i], Y, n, NoOfY);
return total_pairs;
}
// Driver method
public static void main(String args[])
{
int X[] = { 2 , 1 , 6 };
int Y[] = { 1 , 5 };
System.out.println( "Total pairs = " + countPairs(X, Y, X.length, Y.length));
}
}
Python3
# Python3 program to find the number
# of pairs (x, y) in an array
# such that x^y > y^x
import bisect
# Function to return count of pairs
# with x as one element of the pair.
# It mainly looks for all values in Y
# where x ^ Y[i] > Y[i] ^ x
def count(x, Y, n, NoOfY):
# If x is 0, then there cannot be
# any value in Y such that
# x^Y[i] > Y[i]^x
if x = = 0 :
return 0
# If x is 1, then the number of pairs
# is equal to number of zeroes in Y
if x = = 1 :
return NoOfY[ 0 ]
# Find number of elements in Y[] with
# values greater than x, bisect.bisect_right
# gets address of first greater element
# in Y[0..n-1]
idx = bisect.bisect_right(Y, x)
ans = n - idx
# If we have reached here, then x must be greater than 1, # increase number of pairs for y=0 and y=1
ans + = NoOfY[ 0 ] + NoOfY[ 1 ]
# Decrease number of pairs
# for x=2 and (y=4 or y=3)
if x = = 2 :
ans - = NoOfY[ 3 ] + NoOfY[ 4 ]
# Increase number of pairs
# for x=3 and y=2
if x = = 3 :
ans + = NoOfY[ 2 ]
return ans
# Function to return count of pairs (x, y)
# such that x belongs to X, # y belongs to Y and x^y > y^x
def count_pairs(X, Y, m, n):
# To store counts of 0, 1, 2, 3, # and 4 in array Y
NoOfY = [ 0 ] * 5
for i in range (n):
if Y[i] < 5 :
NoOfY[Y[i]] + = 1
# Sort Y so that we can do binary search in it
Y.sort()
total_pairs = 0 # Initialize result
# Take every element of X and
# count pairs with it
for x in X:
total_pairs + = count(x, Y, n, NoOfY)
return total_pairs
# Driver Code
if __name__ = = '__main__' :
X = [ 2 , 1 , 6 ]
Y = [ 1 , 5 ]
print ( "Total pairs = " , count_pairs(X, Y, len (X), len (Y)))
# This code is contributed by shaswatd673
C#
// C# program to finds number of pairs (x, y)
// in an array such that x^y > y^x
using System;
class GFG {
// Function to return count of pairs
// with x as one element of the pair.
// It mainly looks for all values in Y[]
// where x ^ Y[i] > Y[i] ^ x
static int count( int x, int [] Y, int n, int [] NoOfY)
{
// If x is 0, then there cannot be any
// value in Y such that x^Y[i] > Y[i]^x
if (x == 0)
return 0;
// If x is 1, then the number of pais
// is equal to number of zeroes in Y[]
if (x == 1)
return NoOfY[0];
// Find number of elements in Y[] with
// values greater than x getting
// upperbound of x with binary search
int idx = Array.BinarySearch(Y, x);
int ans;
if (idx < 0) {
idx = Math.Abs(idx + 1);
ans = Y.Length - idx;
}
else {
while (idx<n && Y[idx] == x) {
idx++;
}
ans = Y.Length - idx;
}
// If we have reached here, then x
// must be greater than 1, increase
// number of pairs for y = 0 and y = 1
ans += (NoOfY[0] + NoOfY[1]);
// Decrease number of pairs
// for x = 2 and (y = 4 or y = 3)
if (x == 2)
ans -= (NoOfY[3] + NoOfY[4]);
// Increase number of pairs for x = 3 and y = 2
if (x == 3)
ans += NoOfY[2];
return ans;
}
// Function to that returns count
// of pairs (x, y) such that x belongs
// to X[], y belongs to Y[] and x^y > y^x
static int countPairs( int [] X, int [] Y, int m, int n)
{
// To store counts of 0, 1, 2, 3 and 4 in array Y
int [] NoOfY = new int [5];
for ( int i = 0; i < n; i++)
if (Y[i] < 5)
NoOfY[Y[i]]++;
// Sort Y[] so that we can do binary search in it
Array.Sort(Y);
int total_pairs = 0; // Initialize result
// Take every element of X and count pairs with it
for ( int i = 0; i < m; i++)
total_pairs += count(X[i], Y, n, NoOfY);
return total_pairs;
}
// Driver method
public static void Main()
{
int [] X = { 2, 1, 6 };
int [] Y = { 1, 5 };
Console.Write( "Total pairs = " +
countPairs(X, Y, X.Length, Y.Length));
}
}
// This code is contributed by Sam007
输出如下:
Total pairs = 3
时间复杂度:O(nLogn + mLogn), 其中m和n分别是数组X []和Y []的大小。排序步骤需要O(nLogn)时间。然后, 使用二进制搜索在Y []中搜索X []的每个元素。此步骤需要O(mLogn)时间。
本文作者:Shubham Mittal。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。