本文概述
对于给定的n> 0, 找到不同的方式可以将n写入两个或多个正整数之和的方式。
例子:
Input : n = 5
Output : 6
Explanation : All possible six ways are :
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
Input : 4
Output : 4
Explanation : All possible four ways are :
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1
这个问题可以通过与硬币找零问题, 不同之处仅在于, 在这种情况下, 我们应该迭代1到n-1, 而不是像硬币找零问题那样重复特定的硬币值。
C/C++
// Program to find the number of ways, n can be
// written as sum of two or more positive integers.
#include <bits/stdc++.h>
using namespace std;
// Returns number of ways to write n as sum of
// two or more positive integers
int countWays( int n)
{
// table[i] will be storing the number of
// solutions for value i. We need n+1 rows
// as the table is consturcted in bottom up
// manner using the base case (n = 0)
int table[n+1];
// Initialize all table values as 0
memset (table, 0, sizeof (table));
// Base case (If given value is 0)
table[0] = 1;
// Pick all integer one by one and update the
// table[] values after the index greater
// than or equal to n
for ( int i=1; i<n; i++)
for ( int j=i; j<=n; j++)
table[j] += table[j-i];
return table[n];
}
// Driver program
int main()
{
int n = 7;
cout << countWays(n);
return 0;
}
Java
// Program to find the number of ways, // n can be written as sum of two or
// more positive integers.
import java.util.Arrays;
class GFG {
// Returns number of ways to write
// n as sum of two or more positive
// integers
static int countWays( int n)
{
// table[i] will be storing the
// number of solutions for value
// i. We need n+1 rows as the
// table is consturcted in bottom
// up manner using the base case
// (n = 0)
int table[] = new int [n + 1 ];
// Initialize all table values as 0
Arrays.fill(table, 0 );
// Base case (If given value is 0)
table[ 0 ] = 1 ;
// Pick all integer one by one and
// update the table[] values after
// the index greater than or equal
// to n
for ( int i = 1 ; i < n; i++)
for ( int j = i; j <= n; j++)
table[j] += table[j - i];
return table[n];
}
//driver code
public static void main (String[] args)
{
int n = 7 ;
System.out.print(countWays(n));
}
}
// This code is contributed by Anant Agarwal.
python
# Program to find the number of ways, n can be
# written as sum of two or more positive integers.
# Returns number of ways to write n as sum of
# two or more positive integers
def CountWays(n):
# table[i] will be storing the number of
# solutions for value i. We need n+1 rows
# as the table is consturcted in bottom up
# manner using the base case (n = 0)
# Initialize all table values as 0
table = [ 0 ] * (n + 1 )
# Base case (If given value is 0)
# Only 1 way to get 0 (select no integer)
table[ 0 ] = 1
# Pick all integer one by one and update the
# table[] values after the index greater
# than or equal to n
for i in range ( 1 , n ):
for j in range (i , n + 1 ):
table[j] + = table[j - i]
return table[n]
# driver program
def main():
n = 7
print CountWays(n)
if __name__ = = '__main__' :
main()
#This code is contributed by Neelam Yadav
C#
// Program to find the number of ways, n can be
// written as sum of two or more positive integers.
using System;
class GFG {
// Returns number of ways to write n as sum of
// two or more positive integers
static int countWays( int n)
{
// table[i] will be storing the number of
// solutions for value i. We need n+1 rows
// as the table is consturcted in bottom up
// manner using the base case (n = 0)
int []table = new int [n+1];
// Initialize all table values as 0
for ( int i = 0; i < table.Length; i++)
table[i] = 0;
// Base case (If given value is 0)
table[0] = 1;
// Pick all integer one by one and update the
// table[] values after the index greater
// than or equal to n
for ( int i = 1; i < n; i++)
for ( int j = i; j <= n; j++)
table[j] += table[j-i];
return table[n];
}
//driver code
public static void Main()
{
int n = 7;
Console.Write(countWays(n));
}
}
// This code is contributed by Anant Agarwal.
的PHP
<?php
// Program to find the number of ways, n can be
// written as sum of two or more positive integers.
// Returns number of ways to write n as sum
// of two or more positive integers
function countWays( $n )
{
// table[i] will be storing the number of
// solutions for value i. We need n+1 rows
// as the table is consturcted in bottom up
// manner using the base case (n = 0)
$table = array_fill (0, $n + 1, NULL);
// Base case (If given value is 0)
$table [0] = 1;
// Pick all integer one by one and update
// the table[] values after the index
// greater than or equal to n
for ( $i = 1; $i < $n ; $i ++)
for ( $j = $i ; $j <= $n ; $j ++)
$table [ $j ] += $table [ $j - $i ];
return $table [ $n ];
}
// Driver Code
$n = 7;
echo countWays( $n );
// This code is contributed by ita_c
?>
输出如下:
14
时间复杂度O(n2)
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。