本文概述
有P型的" p"球, Q型的" q"球和R型的" r"球。使用这些球, 我们要创建一条直线, 以使没有两个相同类型的球相邻。
例子 :
Input : p = 1, q = 1, r = 0
Output : 2
There are only two arrangements PQ and QP
Input : p = 1, q = 1, r = 1
Output : 6
There are only six arrangements PQR, QPR, QRP, RQP, PRQ and RPQ
Input : p = 2, q = 1, r = 1
Output : 6
There are only six arrangements PQRP, QPRP, PRQP, RPQP, PRPQ and PQPR
天真的解决方案:
这个问题的天真的解决方案是递归解决方案。我们递归地调用三种情况
1)最后要放置的球是P型
2)最后要放置的球是Q型
3)最后要放置的球是R型
以下是上述想法的实现。
C ++
// C++ program to count number of ways to arrange three
// types of balls such that no two balls of same color
// are adjacent to each other
#include<bits/stdc++.h>
using namespace std;
// Returns count of arrangements where last placed ball is
// 'last'. 'last' is 0 for 'p', 1 for 'q' and 2 for 'r'
int countWays( int p, int q, int r, int last)
{
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if (p<0 || q<0 || r<0)
return 0;
// If last ball required is of type P and the number
// of balls of P type is 1 while number of balls of
// other color is 0 the number of ways is 1.
if (p==1 && q==0 && r==0 && last==0)
return 1;
// Same case as above for 'q' and 'r'
if (p==0 && q==1 && r==0 && last==1)
return 1;
if (p==0 && q==0 && r==1 && last==2)
return 1;
// if last ball required is P and the number of ways is
// the sum of number of ways to form sequence with 'p-1' P
// balls, q Q Balls and r R balls ending with Q and R.
if (last==0)
return countWays(p-1, q, r, 1) + countWays(p-1, q, r, 2);
// Same as above case for 'q' and 'r'
if (last==1)
return countWays(p, q-1, r, 0) + countWays(p, q-1, r, 2);
if (last==2)
return countWays(p, q, r-1, 0) + countWays(p, q, r-1, 1);
}
// Returns count of required arrangements
int countUtil( int p, int q, int r)
{
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code to test above
int main()
{
int p = 1, q = 1, r = 1;
printf ( "%d" , countUtil(p, q, r));
return 0;
}
Java
// Java program to count number
// of ways to arrange three types of
// balls such that no two balls of
// same color are adjacent to each other
class GFG {
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0 )
return 0 ;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0 )
return 1 ;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1 )
return 1 ;
if (p == 0 && q == 0 && r == 1 && last == 2 )
return 1 ;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0 )
return countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 );
// Same as above case for 'q' and 'r'
if (last == 1 )
return countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 );
if (last == 2 )
return countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 );
return 0 ;
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r) {
// Three cases arise:
return countWays(p, q, r, 0 ) + // Last required balls is type P
countWays(p, q, r, 1 ) + // Last required balls is type Q
countWays(p, q, r, 2 ); // Last required balls is type R
}
// Driver code
public static void main(String[] args)
{
int p = 1 , q = 1 , r = 1 ;
System.out.print(countUtil(p, q, r));
}
}
// This code is contributed by Anant Agarwal.
Python3
# Python3 program to count
# number of ways to arrange
# three types of balls such
# that no two balls of same
# color are adjacent to each
# other
# Returns count of arrangements
# where last placed ball is
# 'last'. 'last' is 0 for 'p', # 1 for 'q' and 2 for 'r'
def countWays(p, q, r, last):
# if number of balls of
# any color becomes less
# than 0 the number of
# ways arrangements is 0.
if (p < 0 or q < 0 or r < 0 ):
return 0 ;
# If last ball required is
# of type P and the number
# of balls of P type is 1
# while number of balls of
# other color is 0 the number
# of ways is 1.
if (p = = 1 and q = = 0 and
r = = 0 and last = = 0 ):
return 1 ;
# Same case as above
# for 'q' and 'r'
if (p = = 0 and q = = 1 and
r = = 0 and last = = 1 ):
return 1 ;
if (p = = 0 and q = = 0 and
r = = 1 and last = = 2 ):
return 1 ;
# if last ball required is P
# and the number of ways is
# the sum of number of ways
# to form sequence with 'p-1' P
# balls, q Q Balls and r R
# balls ending with Q and R.
if (last = = 0 ):
return (countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 ));
# Same as above case
# for 'q' and 'r'
if (last = = 1 ):
return (countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 ));
if (last = = 2 ):
return (countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 ));
# Returns count of
# required arrangements
def countUtil(p, q, r):
# Three cases arise:
# Last required balls is type P
# Last required balls is type Q
# Last required balls is type R
return (countWays(p, q, r, 0 ) +
countWays(p, q, r, 1 ) +
countWays(p, q, r, 2 ));
# Driver Code
p = 1 ;
q = 1 ;
r = 1 ;
print (countUtil(p, q, r));
# This code is contributed by mits
C#
// C# program to count number
// of ways to arrange three types of
// balls such that no two balls of
// same color are adjacent to each other
using System;
class GFG {
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways
// arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0
&& last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0
&& last == 1)
return 1;
if (p == 0 && q == 0 && r == 1
&& last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R balls
// ending with Q and R.
if (last == 0)
return countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
if (last == 1)
return countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
if (last == 2)
return countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return 0;
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Three cases arise:
// 1. Last required balls is type P
// 2. Last required balls is type Q
// 3. Last required balls is type R
return countWays(p, q, r, 0) +
countWays(p, q, r, 1) +
countWays(p, q, r, 2);
}
// Driver code
public static void Main()
{
int p = 1, q = 1, r = 1;
Console.Write(countUtil(p, q, r));
}
}
// This code is contributed by nitin mittal.
的PHP
<?php
// PHP program to count number
// of ways to arrange three
// types of balls such that
// no two balls of same color
// are adjacent to each other
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
function countWays( $p , $q , $r , $last )
{
// if number of balls of
// any color becomes less
// than 0 the number of
// ways arrangements is 0.
if ( $p < 0 || $q
< 0 || $r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if ( $p == 1 && $q == 0 &&
$r == 0 && $last == 0)
return 1;
// Same case as above
// for 'q' and 'r'
if ( $p == 0 && $q == 1 &&
$r == 0 && $last == 1)
return 1;
if ( $p == 0 && $q == 0 &&
$r == 1 && $last == 2)
return 1;
// if last ball required is P
// and the number of ways is
// the sum of number of ways
// to form sequence with 'p-1' P
// balls, q Q Balls and r R
// balls ending with Q and R.
if ( $last == 0)
return countWays( $p - 1, $q , $r , 1) +
countWays( $p - 1, $q , $r , 2);
// Same as above case
// for 'q' and 'r'
if ( $last == 1)
return countWays( $p , $q - 1, $r , 0) +
countWays( $p , $q - 1, $r , 2);
if ( $last == 2)
return countWays( $p , $q , $r - 1, 0) +
countWays( $p , $q , $r - 1, 1);
}
// Returns count of
// required arrangements
function countUtil( $p , $q , $r )
{
// Three cases arise:
// Last required balls is type P
// Last required balls is type Q
// Last required balls is type R
return countWays( $p , $q , $r , 0) +
countWays( $p , $q , $r , 1) +
countWays( $p , $q , $r , 2);
}
// Driver Code
$p = 1;
$q = 1;
$r = 1;
echo (countUtil( $p , $q , $r ));
// This code is contributed by nitin mittal.
?>
输出如下:
6
该解决方案的时间复杂度是指数级的。
我们可以观察到有很多子问题一次又一次被解决, 因此可以使用动态编程(DP)解决该问题。我们可以轻松地为该问题提供记忆解决方案。
C ++
// C++ program to count number of ways to arrange three
// types of balls such that no two balls of same color
// are adjacent to each other
#include<bits/stdc++.h>
using namespace std;
#define MAX 100
// table to store to store results of subproblems
int dp[MAX][MAX][MAX][3];
// Returns count of arrangements where last placed ball is
// 'last'. 'last' is 0 for 'p', 1 for 'q' and 2 for 'r'
int countWays( int p, int q, int r, int last)
{
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if (p<0 || q<0 || r<0)
return 0;
// If last ball required is of type P and the number
// of balls of P type is 1 while number of balls of
// other color is 0 the number of ways is 1.
if (p==1 && q==0 && r==0 && last==0)
return 1;
// Same case as above for 'q' and 'r'
if (p==0 && q==1 && r==0 && last==1)
return 1;
if (p==0 && q==0 && r==1 && last==2)
return 1;
// If this subproblem is already evaluated
if (dp[q][r][last] != -1)
return dp
[q][r][last];
// if last ball required is P and the number of ways is
// the sum of number of ways to form sequence with 'p-1' P
// balls, q Q Balls and r R balls ending with Q and R.
if (last==0)
dp
[q][r][last] = countWays(p-1, q, r, 1) + countWays(p-1, q, r, 2);
// Same as above case for 'q' and 'r'
else if (last==1)
dp
[q][r][last] = countWays(p, q-1, r, 0) + countWays(p, q-1, r, 2);
else //(last==2)
dp
[q][r][last] = countWays(p, q, r-1, 0) + countWays(p, q, r-1, 1);
return dp
[q][r][last];
}
// Returns count of required arrangements
int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
memset (dp, -1, sizeof (dp));
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code to test above
int main()
{
int p = 1, q = 1, r = 1;
printf ( "%d" , countUtil(p, q, r));
return 0;
}
Java
// Java program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
import java.util.Arrays;
class GFG
{
static final int MAX = 100 ;
// table to store to store results of subproblems
static int dp[][][][] = new int [MAX][MAX][MAX][ 3 ];
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0 )
return 0 ;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0 )
return 1 ;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1 )
return 1 ;
if (p == 0 && q == 0 && r == 1 && last == 2 )
return 1 ;
// If this subproblem is already evaluated
if (dp[q][r][last] != - 1 )
return dp
[q][r][last];
// if last ball required is P and
// the number of ways is the sum
// of number of ways to form sequence
// with 'p-1' P balls, q Q balss and
// r R balls ending with Q and R.
if (last == 0 )
dp
[q][r][last] = countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 );
// Same as above case for 'q' and 'r'
else if (last == 1 )
dp
[q][r][last] = countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 );
//(last==2)
else
dp
[q][r][last] = countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 );
return dp
[q][r][last];
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
for ( int [][][] row : dp)
{
for ( int [][] innerRow : row)
{
for ( int [] innerInnerRow : innerRow)
{
Arrays.fill(innerInnerRow, - 1 );
}
}
};
// Three cases arise:
return countWays(p, q, r, 0 ) + // Last required balls is type P
countWays(p, q, r, 1 ) + // Last required balls is type Q
countWays(p, q, r, 2 ); // Last required balls is type R
}
// Driver code
public static void main(String[] args)
{
int p = 1 , q = 1 , r = 1 ;
System.out.print(countUtil(p, q, r));
}
}
// This code is contributed by Anant Agarwal.
C#
// C# program to count number
// of ways to arrange three
// types of balls such that no
// two balls of same color
// are adjacent to each other
using System;
class GFG
{
static int MAX = 101;
// table to store to store results of subproblems
static int [, , , ] dp = new int [MAX, MAX, MAX, 4];
// Returns count of arrangements
// where last placed ball is
// 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
static int countWays( int p, int q, int r, int last)
{
// if number of balls of any
// color becomes less than 0
// the number of ways arrangements is 0.
if (p < 0 || q < 0 || r < 0)
return 0;
// If last ball required is
// of type P and the number
// of balls of P type is 1
// while number of balls of
// other color is 0 the number
// of ways is 1.
if (p == 1 && q == 0 && r == 0 && last == 0)
return 1;
// Same case as above for 'q' and 'r'
if (p == 0 && q == 1 && r == 0 && last == 1)
return 1;
if (p == 0 && q == 0 && r == 1 && last == 2)
return 1;
// If this subproblem is already evaluated
if (dp != -1)
return dp
;
// if last ball required is P and
// the number of ways is the sum
// of number of ways to form sequence
// with 'p-1' P balls, q Q balss and
// r R balls ending with Q and R.
if (last == 0)
dp
= countWays(p - 1, q, r, 1) +
countWays(p - 1, q, r, 2);
// Same as above case for 'q' and 'r'
else if (last == 1)
dp
= countWays(p, q - 1, r, 0) +
countWays(p, q - 1, r, 2);
//(last==2)
else
dp
= countWays(p, q, r - 1, 0) +
countWays(p, q, r - 1, 1);
return dp
;
}
// Returns count of required arrangements
static int countUtil( int p, int q, int r)
{
// Initialize 'dp' array
for ( int i = 0; i < MAX; i++)
for ( int j = 0; j < MAX; j++)
for ( int k = 0; k < MAX; k++)
for ( int l = 0; l < 4; l++)
dp[i, j, k, l] = -1;
// Three cases arise:
return countWays(p, q, r, 0) + // Last required balls is type P
countWays(p, q, r, 1) + // Last required balls is type Q
countWays(p, q, r, 2); // Last required balls is type R
}
// Driver code
static void Main()
{
int p = 1, q = 1, r = 1;
Console.WriteLine(countUtil(p, q, r));
}
}
// This code is contributed by mits.
Python3
# Python3 program to count number of ways to
# arrange three types of balls such that no
# two balls of same color are adjacent to each other
MAX = 100 ;
# table to store to store results of subproblems
dp = [[[[ - 1 ] * 4 for i in range ( MAX )]
for j in range ( MAX )]
for k in range ( MAX )];
# Returns count of arrangements where last
# placed ball is 'last'. 'last' is 0 for 'p', # 1 for 'q' and 2 for 'r'
def countWays(p, q, r, last):
# if number of balls of any color becomes less
# than 0 the number of ways arrangements is 0.
if (p < 0 or q < 0 or r < 0 ):
return 0 ;
# If last ball required is of type P and the
# number of balls of P type is 1 while number
# of balls of other color is 0 the number of
# ways is 1.
if (p = = 1 and q = = 0 and
r = = 0 and last = = 0 ):
return 1 ;
# Same case as above for 'q' and 'r'
if (p = = 0 and q = = 1 and
r = = 0 and last = = 1 ):
return 1 ;
if (p = = 0 and q = = 0 and
r = = 1 and last = = 2 ):
return 1 ;
# If this subproblem is already evaluated
if (dp[q][r][last] ! = - 1 ):
return dp
[q][r][last];
# if last ball required is P and the number
# of ways is the sum of number of ways to
# form sequence with 'p-1' P balls, q Q Balls
# and r R balls ending with Q and R.
if (last = = 0 ):
dp
[q][r][last] = (countWays(p - 1 , q, r, 1 ) +
countWays(p - 1 , q, r, 2 ));
# Same as above case for 'q' and 'r'
elif (last = = 1 ):
dp
[q][r][last] = (countWays(p, q - 1 , r, 0 ) +
countWays(p, q - 1 , r, 2 ));
else :
#(last==2)
dp
[q][r][last] = (countWays(p, q, r - 1 , 0 ) +
countWays(p, q, r - 1 , 1 ));
return dp
[q][r][last];
# Returns count of required arrangements
def countUtil(p, q, r):
# Three cases arise:
# Last required balls is type P
# Last required balls is type Q
# Last required balls is type R
return (countWays(p, q, r, 0 ) +
countWays(p, q, r, 1 ) +
countWays(p, q, r, 2 ));
# Driver Code
p, q, r = 1 , 1 , 1 ;
print (countUtil(p, q, r));
# This code is contributed by mits
的PHP
<?php
// PHP program to count number of ways to
// arrange three types of balls such that
// no two balls of same color are adjacent
// to each other
$MAX = 100;
// table to store to store results of subproblems
$dp = array_fill (0, $MAX , array_fill (0, $MAX , array_fill (0, $MAX , array_fill (0, 3, -1))));
// Returns count of arrangements where last
// placed ball is 'last'. 'last' is 0 for 'p', // 1 for 'q' and 2 for 'r'
function countWays( $p , $q , $r , $last )
{
global $dp ;
// if number of balls of any color becomes less
// than 0 the number of ways arrangements is 0.
if ( $p < 0 || $q < 0 || $r < 0)
return 0;
// If last ball required is of type P and the
// number of balls of P type is 1 while number
// of balls of other color is 0 the number of
// ways is 1.
if ( $p == 1 && $q == 0 && $r == 0 && $last == 0)
return 1;
// Same case as above for 'q' and 'r'
if ( $p == 0 && $q == 1 && $r == 0 && $last == 1)
return 1;
if ( $p == 0 && $q == 0 && $r == 1 && $last == 2)
return 1;
// If this subproblem is already evaluated
if ( $dp [ $p ][ $q ][ $r ][ $last ] != -1)
return $dp [ $p ][ $q ][ $r ][ $last ];
// if last ball required is P and the number of
// ways is the sum of number of ways to form
// sequence with 'p-1' P balls, q Q Balls and r
// R balls ending with Q and R.
if ( $last == 0)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p - 1, $q , $r , 1) +
countWays( $p - 1, $q , $r , 2);
// Same as above case for 'q' and 'r'
else if ( $last == 1)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p , $q - 1, $r , 0) +
countWays( $p , $q - 1, $r , 2);
else //(last==2)
$dp [ $p ][ $q ][ $r ][ $last ] = countWays( $p , $q , $r - 1, 0) +
countWays( $p , $q , $r - 1, 1);
return $dp [ $p ][ $q ][ $r ][ $last ];
}
// Returns count of required arrangements
function countUtil( $p , $q , $r )
{
// Three cases arise:
return countWays( $p , $q , $r , 0) + // Last required balls is type P
countWays( $p , $q , $r , 1) + // Last required balls is type Q
countWays( $p , $q , $r , 2); // Last required balls is type R
}
// Driver code
$p = 1;
$q = 1;
$r = 1;
print (countUtil( $p , $q , $r ));
// This code is contributed by mits
?>
输出如下:
6
时间复杂度:O(p * q * r)
辅助空间:O(p * q * r * 3)
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。