本文概述
给定一组m个不同的正整数和值"N"。问题在于计算通过对数组元素求和形成"N"的总数。允许重复和不同的安排。
例子 :
Input : arr = {1, 5, 6}, N = 7
Output : 6
Explanation:- The different ways are:
1+1+1+1+1+1+1
1+1+5
1+5+1
5+1+1
1+6
6+1
Input : arr = {12, 3, 1, 9}, N = 14
Output : 150
方法:该方法基于动态编程的概念。
countWays(arr, m, N)
Declare and initialize count[N + 1] = {0}
count[0] = 1
for i = 1 to N
for j = 0 to m - 1
if i >= arr[j]
count[i] += count[i - arr[j]]
return count[N]
下面是上述方法的实现。
C ++
// C++ implementation to count ways
// to sum up to a given value N
#include <bits/stdc++.h>
using namespace std;
// function to count the total
// number of ways to sum up to 'N'
int countWays( int arr[], int m, int N)
{
int count[N + 1];
memset (count, 0, sizeof (count));
// base case
count[0] = 1;
// count ways for all values up
// to 'N' and store the result
for ( int i = 1; i <= N; i++)
for ( int j = 0; j < m; j++)
// if i >= arr[j] then
// accumulate count for value 'i' as
// ways to form value 'i-arr[j]'
if (i >= arr[j])
count[i] += count[i - arr[j]];
// required number of ways
return count[N];
}
// Driver code
int main()
{
int arr[] = {1, 5, 6};
int m = sizeof (arr) / sizeof (arr[0]);
int N = 7;
cout << "Total number of ways = "
<< countWays(arr, m, N);
return 0;
}
Java
// Java implementation to count ways
// to sum up to a given value N
class Gfg
{
static int arr[] = { 1 , 5 , 6 };
// method to count the total number
// of ways to sum up to 'N'
static int countWays( int N)
{
int count[] = new int [N + 1 ];
// base case
count[ 0 ] = 1 ;
// count ways for all values up
// to 'N' and store the result
for ( int i = 1 ; i <= N; i++)
for ( int j = 0 ; j < arr.length; j++)
// if i >= arr[j] then
// accumulate count for value 'i' as
// ways to form value 'i-arr[j]'
if (i >= arr[j])
count[i] += count[i - arr[j]];
// required number of ways
return count[N];
}
// Driver code
public static void main(String[] args)
{
int N = 7 ;
System.out.println( "Total number of ways = "
+ countWays(N));
}
}
Python3
# Python3 implementation to count
# ways to sum up to a given value N
# Function to count the total
# number of ways to sum up to 'N'
def countWays(arr, m, N):
count = [ 0 for i in range (N + 1 )]
# base case
count[ 0 ] = 1
# Count ways for all values up
# to 'N' and store the result
for i in range ( 1 , N + 1 ):
for j in range (m):
# if i >= arr[j] then
# accumulate count for value 'i' as
# ways to form value 'i-arr[j]'
if (i > = arr[j]):
count[i] + = count[i - arr[j]]
# required number of ways
return count[N]
# Driver Code
arr = [ 1 , 5 , 6 ]
m = len (arr)
N = 7
print ( "Total number of ways = " , countWays(arr, m, N))
# This code is contributed by Anant Agarwal.
C#
// C# implementation to count ways
// to sum up to a given value N
using System;
class Gfg
{
static int []arr = {1, 5, 6};
// method to count the total number
// of ways to sum up to 'N'
static int countWays( int N)
{
int []count = new int [N+1];
// base case
count[0] = 1;
// count ways for all values up
// to 'N' and store the result
for ( int i = 1; i <= N; i++)
for ( int j = 0; j < arr.Length; j++)
// if i >= arr[j] then
// accumulate count for value 'i' as
// ways to form value 'i-arr[j]'
if (i >= arr[j])
count[i] += count[i - arr[j]];
// required number of ways
return count[N];
}
// Driver code
public static void Main()
{
int N = 7;
Console.Write( "Total number of ways = "
+ countWays(N));
}
}
//This code is contributed by nitin mittal.
的PHP
<?php
// PHP implementation to count ways
// to sum up to a given value N
// function to count the total
// number of ways to sum up to 'N'
function countWays( $arr , $m , $N )
{
$count = array_fill (0, $N + 1, 0);
// base case
$count [0] = 1;
// count ways for all values up
// to 'N' and store the result
for ( $i = 1; $i <= $N ; $i ++)
for ( $j = 0; $j < $m ; $j ++)
// if i >= arr[j] then
// accumulate count for value 'i' as
// ways to form value 'i-arr[j]'
if ( $i >= $arr [ $j ])
$count [ $i ] += $count [ $i - $arr [ $j ]];
// required number of ways
return $count [ $N ];
}
// Driver code
$arr = array (1, 5, 6);
$m = count ( $arr );
$N = 7;
echo "Total number of ways = " , countWays( $arr , $m , $N );
// This code is contributed by Ryuga
?>
输出如下:
Total number of ways = 6
时间复杂度:O(N * m)
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。