本文概述
给我们三个值
,
和
其中
是矩阵中的行数,
是矩阵中的列数, 并且
是只能具有两个值-1和1的数字。我们的目的是找到填充矩阵的方式的数目。
这样每一行每一列中所有元素的乘积等于
。由于方法的数量可能很大, 我们将输出
例子:
Input : n = 2, m = 4, k = -1
Output : 8
Following configurations satisfy the conditions:-
Input : n = 2, m = 1, k = -1
Output : The number of filling the matrix
are 0
从以上条件可以看出, 矩阵中唯一可以输入的元素是1和-1。现在我们可以轻松推断出一些极端情况
如果k = -1, 则行和列数的总和不能为奇数, 因为-1将出现为奇数
因此, 如果每一行和每一列的次数为总和为奇数, 则答案为
.
如果n = 1或m = 1, 则只有一种填充矩阵的方式, 因此答案为1。
如果以上情况均不适用, 则我们填写第一个
行和第一个
1和-1的列。然后, 由于已经知道每一行每一列的乘积, 因此可以唯一地标识其余数字, 因此答案是
C ++
// CPP program to find number of ways to fill
// a matrix under given constraints
#include <bits/stdc++.h>
using namespace std;
#define mod 100000007
/* Returns a raised power t under modulo mod */
long long modPower( long long a, long long t)
{
long long now = a, ret = 1;
// Counting number of ways of filling the matrix
while (t) {
if (t & 1)
ret = now * (ret % mod);
now = now * (now % mod);
t >>= 1;
}
return ret;
}
// Function calculating the answer
long countWays( int n, int m, int k)
{
// if sum of numbers of rows and columns is odd
// i.e (n + m) % 2 == 1 and k = -1 then there
// are 0 ways of filiing the matrix.
if (k == -1 && (n + m) % 2 == 1)
return 0;
// If there is one row or one column then there
// is only one way of filling the matrix
if (n == 1 || m == 1)
return 1;
// If the above cases are not followed then we
// find ways to fill the n - 1 rows and m - 1
// columns which is 2 ^ ((m-1)*(n-1)).
return (modPower(modPower(( long long )2, n - 1), m - 1) % mod);
}
// Driver function for the program
int main()
{
int n = 2, m = 7, k = 1;
cout << countWays(n, m, k);
return 0;
}
输出如下:
64
Java
// Java program to find number of ways to fill
// a matrix under given constraints
import java.io.*;
class Example {
final static long mod = 100000007 ;
/* Returns a raised power t under modulo mod */
static long modPower( long a, long t, long mod)
{
long now = a, ret = 1 ;
// Counting number of ways of filling the
// matrix
while (t > 0 ) {
if (t % 2 == 1 )
ret = now * (ret % mod);
now = now * (now % mod);
t >>= 1 ;
}
return ret;
}
// Function calculating the answer
static long countWays( int n, int m, int k)
{
// if sum of numbers of rows and columns is
// odd i.e (n + m) % 2 == 1 and k = -1, // then there are 0 ways of filiing the matrix.
if (n == 1 || m == 1 )
return 1 ;
// If there is one row or one column then
// there is only one way of filling the matrix
else if ((n + m) % 2 == 1 && k == - 1 )
return 0 ;
// If the above cases are not followed then we
// find ways to fill the n - 1 rows and m - 1
// columns which is 2 ^ ((m-1)*(n-1)).
return (modPower(modPower(( long ) 2 , n - 1 , mod), m - 1 , mod) % mod);
}
// Driver function for the program
public static void main(String args[]) throws IOException
{
int n = 2 , m = 7 , k = 1 ;
System.out.println(countWays(n, m, k));
}
}
Python 3
# Python program to find number of ways to
# fill a matrix under given constraints
# Returns a raised power t under modulo mod
def modPower(a, t):
now = a;
ret = 1 ;
mod = 100000007 ;
# Counting number of ways of filling
# the matrix
while (t):
if (t & 1 ):
ret = now * (ret % mod);
now = now * (now % mod);
t >> = 1 ;
return ret;
# Function calculating the answer
def countWays(n, m, k):
mod = 100000007 ;
# if sum of numbers of rows and columns
# is odd i.e (n + m) % 2 == 1 and k = -1
# then there are 0 ways of filiing the matrix.
if (k = = - 1 and ((n + m) % 2 = = 1 )):
return 0 ;
# If there is one row or one column then
# there is only one way of filling the matrix
if (n = = 1 or m = = 1 ):
return 1 ;
# If the above cases are not followed then we
# find ways to fill the n - 1 rows and m - 1
# columns which is 2 ^ ((m-1)*(n-1)).
return (modPower(modPower( 2 , n - 1 ), m - 1 ) % mod);
# Driver Code
n = 2 ;
m = 7 ;
k = 1 ;
print (countWays(n, m, k));
# This code is contributed
# by Shivi_Aggarwal
C#
// C# program to find number of ways to fill
// a matrix under given constraints
using System;
class Example
{
static long mod = 100000007;
// Returns a raised power t
// under modulo mod
static long modPower( long a, long t, long mod)
{
long now = a, ret = 1;
// Counting number of ways
// of filling the
// matrix
while (t > 0)
{
if (t % 2 == 1)
ret = now * (ret % mod);
now = now * (now % mod);
t >>= 1;
}
return ret;
}
// Function calculating the answer
static long countWays( int n, int m, int k)
{
// if sum of numbers of rows
// and columns is odd i.e
// (n + m) % 2 == 1 and
// k = -1, then there are 0
// ways of filiing the matrix.
if (n == 1 || m == 1)
return 1;
// If there is one row or one
// column then there is only
// one way of filling the matrix
else if ((n + m) % 2 == 1 && k == -1)
return 0;
// If the above cases are not
// followed then we find ways
// to fill the n - 1 rows and
// m - 1 columns which is
// 2 ^ ((m-1)*(n-1)).
return (modPower(modPower(( long )2, n - 1, mod), m - 1, mod) % mod);
}
// Driver Code
public static void Main()
{
int n = 2, m = 7, k = 1;
Console.WriteLine(countWays(n, m, k));
}
}
// This code is contributed by vt_m.
的PHP
<?php
// PHP program to find number
// of ways to fill a matrix under
// given constraints
$mod = 100000007;
// Returns a raised power t
// under modulo mod
function modPower( $a , $t )
{
global $mod ;
$now = $a ; $ret = 1;
// Counting number of ways
// of filling the matrix
while ( $t )
{
if ( $t & 1)
$ret = $now * ( $ret % $mod );
$now = $now * ( $now % $mod );
$t >>= 1;
}
return $ret ;
}
// Function calculating the answer
function countWays( $n , $m , $k )
{
global $mod ;
// if sum of numbers of rows
// and columns is odd i.e
// (n + m) % 2 == 1 and k = -1
// then there are 0 ways of
// filiing the matrix.
if ( $k == -1 and ( $n + $m ) % 2 == 1)
return 0;
// If there is one row or
// one column then there
// is only one way of
// filling the matrix
if ( $n == 1 or $m == 1)
return 1;
// If the above cases are
// not followed then we
// find ways to fill the
// n - 1 rows and m - 1
// columns which is
// 2 ^ ((m-1)*(n-1)).
return (modPower(modPower(2, $n - 1), $m - 1) % $mod );
}
// Driver Code
$n = 2;
$m = 7;
$k = 1;
echo countWays( $n , $m , $k );
// This code is contributed by anuj_67.
?>
输出如下:
64
上述解决方案的时间复杂度为