本文概述
给定一个数字作为字符串, 编写一个函数来查找给定字符串的子字符串(或连续子序列)的数量, 这些子字符串的递归加起来为9。
例如, 将729的数字递归加到9,
7 + 2 + 9 = 18
18递归
1 + 8 = 9
例子:
Input: 4189
Output: 3
There are three substrings which recursively add to 9.
The substrings are 18, 9 and 189.
Input: 999
Output: 6
There are 6 substrings which recursively add to 9.
9, 99, 999, 9, 99, 9
仅当数字为9的倍数时, 数字的所有数字才会累加9, 我们基本上需要检查所有子字符串s的s%9。下面程序中使用的一个技巧是进行模块化算术, 以避免大字符串溢出。
以下是基于此方法的简单实现。该实现假定输入数字中没有前导0。
C ++
// C++ program to count substrings with recursive sum equal to 9
#include <iostream>
#include <cstring>
using namespace std;
int count9s( char number[])
{
int count = 0; // To store result
int n = strlen (number);
// Consider every character as beginning of substring
for ( int i = 0; i < n; i++)
{
int sum = number[i] - '0' ; //sum of digits in current substring
if (number[i] == '9' ) count++;
// One by one choose every character as an ending character
for ( int j = i+1; j < n; j++)
{
// Add current digit to sum, if sum becomes multiple of 5
// then increment count. Let us do modular arithmetic to
// avoid overflow for big strings
sum = (sum + number[j] - '0' )%9;
if (sum == 0)
count++;
}
}
return count;
}
// driver program to test above function
int main()
{
cout << count9s( "4189" ) << endl;
cout << count9s( "1809" );
return 0;
}
Java
// Java program to count
// substrings with
// recursive sum equal to 9
import java.io.*;
class GFG
{
static int count9s(String number)
{
// To store result
int count = 0 ;
int n = number.length();
// Consider every character
// as beginning of substring
for ( int i = 0 ; i < n; i++)
{
// sum of digits in
// current substring
int sum = number.charAt(i) - '0' ;
if (number.charAt(i) == '9' )
count++;
// One by one choose
// every character as
// an ending character
for ( int j = i + 1 ;
j < n; j++)
{
// Add current digit to
// sum, if sum becomes
// multiple of 5 then
// increment count. Let
// us do modular arithmetic
// to avoid overflow for
// big strings
sum = (sum +
number.charAt(j) -
'0' ) % 9 ;
if (sum == 0 )
count++;
}
}
return count;
}
// Driver Code
public static void main (String[] args)
{
System.out.println(count9s( "4189" ));
System.out.println(count9s( "1809" ));
}
}
// This code is contributed
// by anuj_67.
Python 3
# Python 3 program to count substrings
# with recursive sum equal to 9
def count9s(number):
count = 0 # To store result
n = len (number)
# Consider every character as
# beginning of substring
for i in range (n):
# sum of digits in current substring
sum = ord (number[i]) - ord ( '0' )
if (number[i] = = '9' ):
count + = 1
# One by one choose every character
# as an ending character
for j in range (i + 1 , n):
# Add current digit to sum, if
# sum becomes multiple of 5 then
# increment count. Let us do
# modular arithmetic to avoid
# overflow for big strings
sum = ( sum + ord (number[j]) -
ord ( '0' )) % 9
if ( sum = = 0 ):
count + = 1
return count
# Driver Code
if __name__ = = "__main__" :
print (count9s( "4189" ))
print (count9s( "1809" ))
# This code is contributed by ita_c
C#
// C# program to count
// substrings with
// recursive sum equal to 9
using System;
class GFG
{
static int count9s(String number)
{
// To store result
int count = 0;
int n = number.Length;
// Consider every character
// as beginning of substring
for ( int i = 0; i < n; i++)
{
// sum of digits in
// current substring
int sum = number[i] - '0' ;
if (number[i] == '9' )
count++;
// One by one choose
// every character as
// an ending character
for ( int j = i + 1;
j < n; j++)
{
// Add current digit to
// sum, if sum becomes
// multiple of 5 then
// increment count. Let
// us do modular arithmetic
// to avoid overflow for
// big strings
sum = (sum + number[j] -
'0' ) % 9;
if (sum == 0)
count++;
}
}
return count;
}
// Driver Code
public static void Main ()
{
Console.WriteLine(count9s( "4189" ));
Console.WriteLine(count9s( "1809" ));
}
}
// This code is contributed
// by anuj_67.
的PHP
<?php
// PHP program to count substrings
// with recursive sum equal to 9
function count9s( $number )
{
// To store result
$count = 0;
$n = strlen ( $number );
// Consider every character as
// beginning of substring
for ( $i = 0; $i < $n ; $i ++)
{
//sum of digits in
// current substring
$sum = $number [ $i ] - '0' ;
if ( $number [ $i ] == '9' ) $count ++;
// One by one choose every character
// as an ending character
for ( $j = $i + 1; $j < $n ; $j ++)
{
// Add current digit to sum, // if sum becomes multiple of 5
// then increment count. Let us
// do modular arithmetic to
// avoid overflow for big strings
$sum = ( $sum + $number [ $j ] - '0' ) % 9;
if ( $sum == 0)
$count ++;
}
}
return $count ;
}
// Driver Code
echo count9s( "4189" ), "\n" ;
echo count9s( "1809" );
// This code is contributed by ajit
?>
输出如下:
3
5
上面程序的时间复杂度是O(n2)。请让我知道是否有更好的解决方案。
给定一个数字作为字符串, 找到递归加起来为9 |的连续子序列数。套装2
本文作者:阿比舍克。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。