本文概述
给定一个栈, 使用递归对其进行排序。不允许使用while, for..etc等任何循环结构。我们只能在Stack S上使用以下ADT函数:
is_empty(S) : Tests whether stack is empty or not.
push(S) : Adds new element to the stack.
pop(S) : Removes top element from the stack.
top(S) : Returns value of the top element. Note that this
function does not remove element from the stack.
例子:
Input: -3 <--- Top
14
18
-5
30
Output: 30 <--- Top
18
14
-3
-5
这个问题主要是使用递归的反向栈的一种变体。
解决方案的想法是将所有值保留在函数调用栈中, 直到栈变空。当栈变空时, 请按排序顺序一次插入所有保留的项目。在这里, 排序顺序很重要。
我们可以使用以下算法对栈元素进行排序:
sortStack(stack S)
if stack is not empty:
temp = pop(S);
sortStack(S);
sortedInsert(S, temp);
下面的算法是对元素进行插入排序:
sortedInsert(Stack S, element)
if stack is empty OR element > top element
push(S, elem)
else
temp = pop(S)
sortedInsert(S, element)
push(S, temp)
插图:
Let given stack be
-3 <-- top of the stack
14
18
-5
30
让我们使用上面的示例来说明栈的排序:
首先从栈中弹出所有元素, 然后将弹出的元素存储在变量" temp"中。弹出所有elements函数后, 其栈框架将如下所示:
temp = -3 --> stack frame #1
temp = 14 --> stack frame #2
temp = 18 --> stack frame #3
temp = -5 --> stack frame #4
temp = 30 --> stack frame #5
现在栈为空, 并调用了" insert_in_sorted_order()"函数, 并在栈底部插入了30(从栈帧5开始)。现在栈如下所示:
30 <-- top of the stack
现在选择下一个元素, 即-5(来自栈帧#4)。由于-5 <30, 因此-5会插入栈的底部。现在栈变为:
30 <-- top of the stack
-0
接下来的18个(来自栈帧3)被选中。由于18 <30, 因此将18插入30以下。现在栈变为:
30 <-- top of the stack
18
-5
接下来的14个(来自栈帧2)被选中。由于14 <30和14 <18, 因此将其插入18以下。现在, 栈变为:
30 <-- top of the stack
18
14
-5
现在, 选择-3(从栈帧1), 因为-3 <30和-3 <18和-3 <14, 它将插入14以下。现在, 栈变为:
30 <-- top of the stack
18
14
-3
-5
实现
下面是上述算法的实现。
C ++
// C++ program to sort a stack using recursion
#include <iostream>
using namespace std;
// Stack is represented using linked list
struct stack {
int data;
struct stack* next;
};
// Utility function to initialize stack
void initStack( struct stack** s) { *s = NULL; }
// Utility function to chcek if stack is empty
int isEmpty( struct stack* s)
{
if (s == NULL)
return 1;
return 0;
}
// Utility function to push an item to stack
void push( struct stack** s, int x)
{
struct stack* p = ( struct stack*) malloc ( sizeof (*p));
if (p == NULL) {
fprintf (stderr, "Memory allocation failed.\n" );
return ;
}
p->data = x;
p->next = *s;
*s = p;
}
// Utility function to remove an item from stack
int pop( struct stack** s)
{
int x;
struct stack* temp;
x = (*s)->data;
temp = *s;
(*s) = (*s)->next;
free (temp);
return x;
}
// Function to find top item
int top( struct stack* s) { return (s->data); }
// Recursive function to insert an item x in sorted way
void sortedInsert( struct stack** s, int x)
{
// Base case: Either stack is empty or newly inserted
// item is greater than top (more than all existing)
if (isEmpty(*s) or x > top(*s)) {
push(s, x);
return ;
}
// If top is greater, remove the top item and recur
int temp = pop(s);
sortedInsert(s, x);
// Put back the top item removed earlier
push(s, temp);
}
// Function to sort stack
void sortStack( struct stack** s)
{
// If stack is not empty
if (!isEmpty(*s)) {
// Remove the top item
int x = pop(s);
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility function to print contents of stack
void printStack( struct stack* s)
{
while (s) {
cout << s->data << " " ;
s = s->next;
}
cout << "\n" ;
}
// Driver code
int main( void )
{
struct stack* top;
initStack(&top);
push(&top, 30);
push(&top, -5);
push(&top, 18);
push(&top, 14);
push(&top, -3);
cout << "Stack elements before sorting:\n" ;
printStack(top);
sortStack(&top);
cout << "\n" ;
cout << "Stack elements after sorting:\n" ;
printStack(top);
return 0;
}
// This code is contributed by SHUBHAMSINGH10
C
// C program to sort a stack using recursion
#include <stdio.h>
#include <stdlib.h>
// Stack is represented using linked list
struct stack {
int data;
struct stack* next;
};
// Utility function to initialize stack
void initStack( struct stack** s) { *s = NULL; }
// Utility function to chcek if stack is empty
int isEmpty( struct stack* s)
{
if (s == NULL)
return 1;
return 0;
}
// Utility function to push an item to stack
void push( struct stack** s, int x)
{
struct stack* p = ( struct stack*) malloc ( sizeof (*p));
if (p == NULL) {
fprintf (stderr, "Memory allocation failed.\n" );
return ;
}
p->data = x;
p->next = *s;
*s = p;
}
// Utility function to remove an item from stack
int pop( struct stack** s)
{
int x;
struct stack* temp;
x = (*s)->data;
temp = *s;
(*s) = (*s)->next;
free (temp);
return x;
}
// Function to find top item
int top( struct stack* s) { return (s->data); }
// Recursive function to insert an item x in sorted way
void sortedInsert( struct stack** s, int x)
{
// Base case: Either stack is empty or newly inserted
// item is greater than top (more than all existing)
if (isEmpty(*s) || x > top(*s)) {
push(s, x);
return ;
}
// If top is greater, remove the top item and recur
int temp = pop(s);
sortedInsert(s, x);
// Put back the top item removed earlier
push(s, temp);
}
// Function to sort stack
void sortStack( struct stack** s)
{
// If stack is not empty
if (!isEmpty(*s)) {
// Remove the top item
int x = pop(s);
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility function to print contents of stack
void printStack( struct stack* s)
{
while (s) {
printf ( "%d " , s->data);
s = s->next;
}
printf ( "\n" );
}
// Driver code
int main( void )
{
struct stack* top;
initStack(&top);
push(&top, 30);
push(&top, -5);
push(&top, 18);
push(&top, 14);
push(&top, -3);
printf ( "Stack elements before sorting:\n" );
printStack(top);
sortStack(&top);
printf ( "\n\n" );
printf ( "Stack elements after sorting:\n" );
printStack(top);
return 0;
}
Java
// Java program to sort a Stack using recursion
// Note that here predefined Stack class is used
// for stack operation
import java.util.ListIterator;
import java.util.Stack;
class Test
{
// Recursive Method to insert an item x in sorted way
static void sortedInsert(Stack<Integer> s, int x)
{
// Base case: Either stack is empty or newly
// inserted item is greater than top (more than all
// existing)
if (s.isEmpty() || x > s.peek())
{
s.push(x);
return ;
}
// If top is greater, remove the top item and recur
int temp = s.pop();
sortedInsert(s, x);
// Put back the top item removed earlier
s.push(temp);
}
// Method to sort stack
static void sortStack(Stack<Integer> s)
{
// If stack is not empty
if (!s.isEmpty())
{
// Remove the top item
int x = s.pop();
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility Method to print contents of stack
static void printStack(Stack<Integer> s)
{
ListIterator<Integer> lt = s.listIterator();
// forwarding
while (lt.hasNext())
lt.next();
// printing from top to bottom
while (lt.hasPrevious())
System.out.print(lt.previous() + " " );
}
// Driver code
public static void main(String[] args)
{
Stack<Integer> s = new Stack<>();
s.push( 30 );
s.push(- 5 );
s.push( 18 );
s.push( 14 );
s.push(- 3 );
System.out.println(
"Stack elements before sorting: " );
printStack(s);
sortStack(s);
System.out.println(
" \n\nStack elements after sorting:" );
printStack(s);
}
}
Python3
# Python program to sort a stack using recursion
# Recursive method to insert element in sorted way
def sortedInsert(s, element):
# Base case: Either stack is empty or newly inserted
# item is greater than top (more than all existing)
if len (s) = = 0 or element > s[ - 1 ]:
s.append(element)
return
else :
# Remove the top item and recur
temp = s.pop()
sortedInsert(s, element)
# Put back the top item removed earlier
s.append(temp)
# Method to sort stack
def sortStack(s):
# If stack is not empty
if len (s) ! = 0 :
# Remove the top item
temp = s.pop()
# Sort remaining stack
sortStack(s)
# Push the top item back in sorted stack
sortedInsert(s, temp)
# Printing contents of stack
def printStack(s):
for i in s[:: - 1 ]:
print (i, end = " " )
print ()
# Driver Code
if __name__ = = '__main__' :
s = []
s.append( 30 )
s.append( - 5 )
s.append( 18 )
s.append( 14 )
s.append( - 3 )
print ( "Stack elements before sorting: " )
printStack(s)
sortStack(s)
print ( "\nStack elements after sorting: " )
printStack(s)
# This code is contributed by Muskan Kalra.
C#
// C# program to sort a Stack using recursion
// Note that here predefined Stack class is used
// for stack operation
using System;
using System.Collections;
public class GFG
{
// Recursive Method to insert an item x in sorted way
static void sortedInsert(Stack s, int x)
{
// Base case: Either stack is empty or
// newly inserted item is greater than top
// (more than all existing)
if (s.Count == 0 || x > ( int )s.Peek()) {
s.Push(x);
return ;
}
// If top is greater, remove
// the top item and recur
int temp = ( int )s.Peek();
s.Pop();
sortedInsert(s, x);
// Put back the top item removed earlier
s.Push(temp);
}
// Method to sort stack
static void sortStack(Stack s)
{
// If stack is not empty
if (s.Count > 0) {
// Remove the top item
int x = ( int )s.Peek();
s.Pop();
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility Method to print contents of stack
static void printStack(Stack s)
{
foreach ( int c in s) { Console.Write(c + " " ); }
}
// Driver code
public static void Main(String[] args)
{
Stack s = new Stack();
s.Push(30);
s.Push(-5);
s.Push(18);
s.Push(14);
s.Push(-3);
Console.WriteLine(
"Stack elements before sorting: " );
printStack(s);
sortStack(s);
Console.WriteLine(
" \n\nStack elements after sorting:" );
printStack(s);
}
}
// This code is Contibuted by Arnab Kundu
输出如下:
Stack elements before sorting:
-3 14 18 -5 30
Stack elements after sorting:
30 18 14 -3 -5
复杂度分析:
- 时间复杂度:O(n^2)。
在最坏的情况下sortstack(), sortedinsert()被递归调用" N"次, 以将元素放置在正确的位置 - 辅助空间:O(n^2)
使用栈数据结构存储值
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。