算法设计:博弈的最优策略介绍和实现指南

2021年3月30日15:25:43 发表评论 836 次浏览

本文概述

问题陈述:考虑一行n个硬币, 值v1。 。 。 vn, 其中n为偶数。我们交替轮流与对手进行比赛。在每个回合中, 玩家从该行中选择第一个或最后一个硬币, 将其从行中永久删除, 然后接收硬币的价值。确定如果我们先走, 我们绝对可以赢得的最大金额。

注意:对手和用户一样聪明。

让我们用几个例子来了解问题:

1. 5、3、7、10:用户收集的最大值为15(10 + 5)

2. 8、15、3、7:用户收集的最大值为22(7 + 15)

在每一步中选择最佳方案是否能提供最佳解决方案?

否。在第二个示例中, 这是游戏的完成方式:

1.

......用户选择8。

......对手选择15。

......用户选择7。

......对手选择3。

用户收集的总价值为15(8 + 7)

2.

......用户选择7。

......对手选择8。

......用户选择15。

......对手选择3。

用户收集的总价值为22(7 + 15)

我们已经讨论了一种进行4次递归调用的方法。在这篇文章中,我们讨论了一种新的方法,它进行了两次递归调用。

有两种选择:

1. 用户选择值为Vi的第i个硬币:对手选择第(i + 1)个硬币或第j个硬币。对手打算选择硬币给用户留下最小的价值。

即, 用户可以收集值Vi +(Sum – Vi)– F(i + 1, j, Sum – Vi), 其中Sum是从索引i到j的硬币总和。表达式可以简化为Sum – F(i + 1, j, Sum – Vi)

coinGame1

2. 用户选择值Vj的第j个硬币:对手选择第i个硬币或第(j-1)个硬币。对手打算选择硬币给用户留下最小的价值。

即, 用户可以收集值Vj +(Sum – Vj)– F(i, j-1, Sum – Vj), 其中Sum是从索引i到j的硬币之和。该表达式可以简化为Sum – F(i, j-1, Sum – Vj)

coinGame2

以下是基于以上两个选择的递归解决方案。我们最多选择两个。

F(i, j)  represents the maximum value the user can collect from 
         i'th coin to j'th coin.
arr[]   represents the list of coins

    F(i, j)  = Max(Sum - F(i+1, j, Sum-arr[i]), Sum - F(i, j-1, Sum-arr[j])) 
Base Case
    F(i, j)  = max(arr[i], arr[j])  If j == i+1

简单的递归解决方案

CPP

// C++ program to find out maximum value from a
// given sequence of coins
#include <bits/stdc++.h>
using namespace std;
 
int oSRec( int arr[], int i, int j, int sum)
{
     if (j == i + 1)
         return max(arr[i], arr[j]);
 
     // For both of your choices, the opponent
     // gives you total sum minus maximum of
     // his value
     return max((sum - oSRec(arr, i + 1, j, sum - arr[i])), (sum - oSRec(arr, i, j - 1, sum - arr[j])));
}
 
// Returns optimal value possible that a player can
// collect from an array of coins of size n. Note
// than n must be even
int optimalStrategyOfGame( int * arr, int n)
{
     int sum = 0;
     sum = accumulate(arr, arr + n, sum);
     return oSRec(arr, 0, n - 1, sum);
}
 
// Driver program to test above function
int main()
{
     int arr1[] = { 8, 15, 3, 7 };
     int n = sizeof (arr1) / sizeof (arr1[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr1, n));
 
     int arr2[] = { 2, 2, 2, 2 };
     n = sizeof (arr2) / sizeof (arr2[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr2, n));
 
     int arr3[] = { 20, 30, 2, 2, 2, 10 };
     n = sizeof (arr3) / sizeof (arr3[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr3, n));
 
     return 0;
}

Java

// Java program to find out maximum value from a
// given sequence of coins
import java .io.*;
 
class GFG
{
 
     static int oSRec( int []arr, int i, int j, int sum)
     {
         if (j == i + 1 )
             return Math.max(arr[i], arr[j]);
     
         // For both of your choices, the opponent
         // gives you total sum minus maximum of
         // his value
         return Math.max((sum - oSRec(arr, i + 1 , j, sum - arr[i])), (sum - oSRec(arr, i, j - 1 , sum - arr[j])));
     }
     
     // Returns optimal value possible that a player can
     // collect from an array of coins of size n. Note
     // than n must be even
     static int optimalStrategyOfGame( int [] arr, int n)
     {
         int sum = 0 ;
         for ( int i = 0 ; i < n; i++)
         {
             sum += arr[i];
         }
 
         return oSRec(arr, 0 , n - 1 , sum);
     }
     
     // Driver code
     static public void main (String[] args)
     {
         int []arr1 = { 8 , 15 , 3 , 7 };
         int n = arr1.length;
         System.out.println(optimalStrategyOfGame(arr1, n));
     
         int []arr2 = { 2 , 2 , 2 , 2 };
         n = arr2.length;
         System.out.println(optimalStrategyOfGame(arr2, n));
     
         int []arr3 = { 20 , 30 , 2 , 2 , 2 , 10 };
         n = arr3.length ;
         System.out.println(optimalStrategyOfGame(arr3, n));
     }
}
 
// This code is contributed by anuj_67..

python

# python program to find out maximum value from a
# given sequence of coins
 
def oSRec (arr, i, j, Sum ):
 
     if (j = = i + 1 ):
         return max (arr[i], arr[j])
 
     # For both of your choices, the opponent
     # gives you total Sum minus maximum of
     # his value
     return max (( Sum - oSRec(arr, i + 1 , j, Sum - arr[i])), ( Sum - oSRec(arr, i, j - 1 , Sum - arr[j])))
 
# Returns optimal value possible that a player can
# collect from an array of coins of size n. Note
# than n must be even
def optimalStrategyOfGame(arr, n):
 
     Sum = 0
     Sum = sum (arr)
     return oSRec(arr, 0 , n - 1 , Sum )
 
# Driver code
 
arr1 = [ 8 , 15 , 3 , 7 ]
n = len (arr1)
print (optimalStrategyOfGame(arr1, n))
 
arr2 = [ 2 , 2 , 2 , 2 ]
n = len (arr2)
print (optimalStrategyOfGame(arr2, n))
 
arr3 = [ 20 , 30 , 2 , 2 , 2 , 10 ]
n = len (arr3)
print (optimalStrategyOfGame(arr3, n))
 
# This code is contributed by Mohit kumar 29

C#

// C# program to find out maximum value from a
// given sequence of coins
using System;
class GFG
{
     static int oSRec( int []arr, int i, int j, int sum)
     {
         if (j == i + 1)
             return Math.Max(arr[i], arr[j]);
     
         // For both of your choices, the opponent
         // gives you total sum minus maximum of
         // his value
         return Math.Max((sum - oSRec(arr, i + 1, j, sum - arr[i])), (sum - oSRec(arr, i, j - 1, sum - arr[j])));
     }
     
     // Returns optimal value possible that a player can
     // collect from an array of coins of size n. Note
     // than n must be even
     static int optimalStrategyOfGame( int [] arr, int n)
     {
         int sum = 0;
         for ( int i = 0; i < n; i++)
         {
             sum += arr[i];
         }
 
         return oSRec(arr, 0, n - 1, sum);
     }
     
     // Driver code
     static public void Main ()
     {
         int []arr1 = { 8, 15, 3, 7 };
         int n = arr1.Length;
         Console.WriteLine(optimalStrategyOfGame(arr1, n));
     
         int []arr2 = { 2, 2, 2, 2 };
         n = arr2.Length;
         Console.WriteLine(optimalStrategyOfGame(arr2, n));
     
         int []arr3 = { 20, 30, 2, 2, 2, 10 };
         n = arr3.Length;
         Console.WriteLine(optimalStrategyOfGame(arr3, n));
     }
}
 
// This code is contributed by AnkitRai01

输出如下:

22
4
42

基于内存的解决方案

CPP

// C++ program to find out maximum value from a
// given sequence of coins
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
 
int memo[MAX][MAX];
 
int oSRec( int arr[], int i, int j, int sum)
{
     if (j == i + 1)
         return max(arr[i], arr[j]);
 
     if (memo[i][j] != -1)
         return memo[i][j];
 
     // For both of your choices, the opponent
     // gives you total sum minus maximum of
     // his value
     memo[i][j] = max((sum - oSRec(arr, i + 1, j, sum - arr[i])), (sum - oSRec(arr, i, j - 1, sum - arr[j])));
 
     return memo[i][j];
}
 
// Returns optimal value possible that a player can
// collect from an array of coins of size n. Note
// than n must be even
int optimalStrategyOfGame( int * arr, int n)
{
     // Compute sum of elements
     int sum = 0;
     sum = accumulate(arr, arr + n, sum);
 
     // Initialize memoization table
     memset (memo, -1, sizeof (memo));
 
     return oSRec(arr, 0, n - 1, sum);
}
 
// Driver program to test above function
int main()
{
     int arr1[] = { 8, 15, 3, 7 };
     int n = sizeof (arr1) / sizeof (arr1[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr1, n));
 
     int arr2[] = { 2, 2, 2, 2 };
     n = sizeof (arr2) / sizeof (arr2[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr2, n));
 
     int arr3[] = { 20, 30, 2, 2, 2, 10 };
     n = sizeof (arr3) / sizeof (arr3[0]);
     printf ( "%d\n" , optimalStrategyOfGame(arr3, n));
 
     return 0;
}

Java

// Java program to find out maximum value from a
// given sequence of coins
import java.util.*;
class GFG{
 
static int MAX = 100 ;
 
static int [][]memo = new int [MAX][MAX];
 
static int oSRec( int arr[], int i, int j, int sum)
{
     if (j == i + 1 )
         return Math.max(arr[i], arr[j]);
 
     if (memo[i][j] != - 1 )
         return memo[i][j];
 
     // For both of your choices, the opponent
     // gives you total sum minus maximum of
     // his value
     memo[i][j] = Math.max((sum - oSRec(arr, i + 1 , j, sum - arr[i])), (sum - oSRec(arr, i, j - 1 , sum - arr[j])));
 
     return memo[i][j];
}
 
static int accumulate( int [] arr, int start, int end)
{
     int sum= 0 ;
     for ( int i= 0 ; i < arr.length; i++)
         sum += arr[i];
     return sum;
}
   
// Returns optimal value possible that a player can
// collect from an array of coins of size n. Note
// than n must be even
static int optimalStrategyOfGame( int []arr, int n)
{
     // Compute sum of elements
     int sum = 0 ;
     sum = accumulate(arr, 0 , n);
 
     // Initialize memoization table
     for ( int j = 0 ; j < MAX; j++)
     {
         for ( int k = 0 ; k < MAX; k++)
             memo[j][k] = - 1 ;
     }
 
     return oSRec(arr, 0 , n - 1 , sum);
}
 
// Driver Code
public static void main(String[] args)
{
     int arr1[] = { 8 , 15 , 3 , 7 };
     int n = arr1.length;
     System.out.printf( "%d\n" , optimalStrategyOfGame(arr1, n));
 
     int arr2[] = { 2 , 2 , 2 , 2 };
     n = arr2.length;
     System.out.printf( "%d\n" , optimalStrategyOfGame(arr2, n));
 
     int arr3[] = { 20 , 30 , 2 , 2 , 2 , 10 };
     n = arr3.length;
     System.out.printf( "%d\n" , optimalStrategyOfGame(arr3, n));
}
}
 
// This code is contributed by gauravrajput1

C#

// C# program to find out maximum value from a
// given sequence of coins
using System;
class GFG{
 
   static int MAX = 100;
 
   static int [, ] memo = new int [MAX, MAX];
 
   static int oSRec( int []arr, int i, int j, int sum)
   {
     if (j == i + 1)
       return Math.Max(arr[i], arr[j]);
 
     if (memo[i, j] != -1)
       return memo[i, j];
 
     // For both of your choices, the opponent
     // gives you total sum minus maximum of
     // his value
     memo[i, j] = Math.Max((sum - oSRec(arr, i + 1, j, sum - arr[i])), (sum - oSRec(arr, i, j - 1, sum - arr[j])));
 
     return memo[i, j];
   }
 
   static int accumulate( int [] arr, int start, int end)
   {
     int sum = 0;
     for ( int i = 0; i < arr.Length; i++)
       sum += arr[i];
     return sum;
   }
 
   // Returns optimal value possible that a player can
   // collect from an array of coins of size n. Note
   // than n must be even
   static int optimalStrategyOfGame( int [] arr, int n)
   {
     // Compute sum of elements
     int sum = 0;
     sum = accumulate(arr, 0, n);
 
     // Initialize memoization table
     for ( int j = 0; j < MAX; j++)
     {
       for ( int k = 0; k < MAX; k++)
         memo[j, k] = -1;
     }
 
     return oSRec(arr, 0, n - 1, sum);
   }
 
   // Driver Code
   public static void Main(String[] args)
   {
     int []arr1 = { 8, 15, 3, 7 };
     int n = arr1.Length;
     Console.Write( "{0}\n" , optimalStrategyOfGame(arr1, n));
 
     int []arr2 = { 2, 2, 2, 2 };
     n = arr2.Length;
     Console.Write( "{0}\n" , optimalStrategyOfGame(arr2, n));
 
     int []arr3 = { 20, 30, 2, 2, 2, 10 };
     n = arr3.Length;
     Console.Write( "{0}\n" , optimalStrategyOfGame(arr3, n));
   }
}
 
// This code is contributed by Rohit_ranjan

输出如下:

22
4
42
木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: