本文概述
给定一个由n个正整数和一个数字k组成的数组。找出将所有小于或等于k的数字放在一起所需的最小交换次数。
Input: arr[] = {2, 1, 5, 6, 3}, k = 3
Output: 1
Explanation:
To bring elements 2, 1, 3 together, swap
element '5' with '3' such that final array
will be-
arr[] = {2, 1, 3, 6, 5}
Input: arr[] = {2, 7, 9, 5, 8, 7, 4}, k = 5
Output: 2
一个简单的解决方案是,首先计算所有小于或等于k的元素(说‘好’)。现在遍历每个子数组,并交换值大于k的元素。这种方法的时间复杂度为O(n^2)
一种简单的方法是使用两个指针技术和滑动窗口。
1)查找所有小于或等于" k"的元素的计数。假设计数是" cnt"
2)对长度为" cnt"的窗口使用两个指针技术, 每次都跟踪该范围内有多少个元素大于" k"。假设总数为"bad"。
3)对每个长度为" cnt"的窗口重复步骤2, 并在其中最少计数为"bad"。这将是最终答案。
C ++
// C++ program to find minimum swaps required
// to club all elements less than or equals
// to k together
#include <iostream>
using namespace std;
// Utility function to find minimum swaps
// required to club all elements less than
// or equals to k together
int minSwap( int *arr, int n, int k) {
// Find count of elements which are
// less than equals to k
int count = 0;
for ( int i = 0; i < n; ++i)
if (arr[i] <= k)
++count;
// Find unwanted elements in current
// window of size 'count'
int bad = 0;
for ( int i = 0; i < count; ++i)
if (arr[i] > k)
++bad;
// Initialize answer with 'bad' value of
// current window
int ans = bad;
for ( int i = 0, j = count; j < n; ++i, ++j) {
// Decrement count of previous window
if (arr[i] > k)
--bad;
// Increment count of current window
if (arr[j] > k)
++bad;
// Update ans if count of 'bad'
// is less in current window
ans = min(ans, bad);
}
return ans;
}
// Driver code
int main() {
int arr[] = {2, 1, 5, 6, 3};
int n = sizeof (arr) / sizeof (arr[0]);
int k = 3;
cout << minSwap(arr, n, k) << "\n" ;
int arr1[] = {2, 7, 9, 5, 8, 7, 4};
n = sizeof (arr1) / sizeof (arr1[0]);
k = 5;
cout << minSwap(arr1, n, k);
return 0;
}
Java
// Java program to find minimum
// swaps required to club all
// elements less than or equals
// to k together
import java.lang.*;
class GFG {
// Utility function to find minimum swaps
// required to club all elements less than
// or equals to k together
static int minSwap( int arr[], int n, int k) {
// Find count of elements which are
// less than equals to k
int count = 0 ;
for ( int i = 0 ; i < n; ++i)
if (arr[i] <= k)
++count;
// Find unwanted elements in current
// window of size 'count'
int bad = 0 ;
for ( int i = 0 ; i < count; ++i)
if (arr[i] > k)
++bad;
// Initialize answer with 'bad' value of
// current window
int ans = bad;
for ( int i = 0 , j = count; j < n; ++i, ++j) {
// Decrement count of previous window
if (arr[i] > k)
--bad;
// Increment count of current window
if (arr[j] > k)
++bad;
// Update ans if count of 'bad'
// is less in current window
ans = Math.min(ans, bad);
}
return ans;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 2 , 1 , 5 , 6 , 3 };
int n = arr.length;
int k = 3 ;
System.out.print(minSwap(arr, n, k) + "\n" );
int arr1[] = { 2 , 7 , 9 , 5 , 8 , 7 , 4 };
n = arr1.length;
k = 5 ;
System.out.print(minSwap(arr1, n, k));
}
}
// This code is contributed by Anant Agarwal.
Python3
# Python3 program to find
# minimum swaps required
# to club all elements less
# than or equals to k together
# Utility function to find
# minimum swaps required to
# club all elements less than
# or equals to k together
def minSwap(arr, n, k) :
# Find count of elements
# which are less than
# equals to k
count = 0
for i in range ( 0 , n) :
if (arr[i] < = k) :
count = count + 1
# Find unwanted elements
# in current window of
# size 'count'
bad = 0
for i in range ( 0 , count) :
if (arr[i] > k) :
bad = bad + 1
# Initialize answer with
# 'bad' value of current
# window
ans = bad
j = count
for i in range ( 0 , n) :
if (j = = n) :
break
# Decrement count of
# previous window
if (arr[i] > k) :
bad = bad - 1
# Increment count of
# current window
if (arr[j] > k) :
bad = bad + 1
# Update ans if count
# of 'bad' is less in
# current window
ans = min (ans, bad)
j = j + 1
return ans
# Driver code
arr = [ 2 , 1 , 5 , 6 , 3 ]
n = len (arr)
k = 3
print (minSwap(arr, n, k))
arr1 = [ 2 , 7 , 9 , 5 , 8 , 7 , 4 ]
n = len (arr1)
k = 5
print (minSwap(arr1, n, k))
# This code is contributed by
# Manish Shaw(manishshaw1)
C#
// C# program to find minimum
// swaps required to club all
// elements less than or equals
// to k together
using System;
class GFG {
// Utility function to find minimum swaps
// required to club all elements less than
// or equals to k together
static int minSwap( int []arr, int n, int k) {
// Find count of elements which are
// less than equals to k
int count = 0;
for ( int i = 0; i < n; ++i)
if (arr[i] <= k)
++count;
// Find unwanted elements in current
// window of size 'count'
int bad = 0;
for ( int i = 0; i < count; ++i)
if (arr[i] > k)
++bad;
// Initialize answer with 'bad' value of
// current window
int ans = bad;
for ( int i = 0, j = count; j < n; ++i, ++j) {
// Decrement count of previous window
if (arr[i] > k)
--bad;
// Increment count of current window
if (arr[j] > k)
++bad;
// Update ans if count of 'bad'
// is less in current window
ans = Math.Min(ans, bad);
}
return ans;
}
// Driver code
public static void Main()
{
int []arr = {2, 1, 5, 6, 3};
int n = arr.Length;
int k = 3;
Console.WriteLine(minSwap(arr, n, k));
int []arr1 = {2, 7, 9, 5, 8, 7, 4};
n = arr1.Length;
k = 5;
Console.WriteLine(minSwap(arr1, n, k));
}
}
// This code is contributed by vt_m.
的PHP
<?php
// PHP program to find
// minimum swaps required
// to club all elements
// less than or equals
// to k together
// Utility function to
// find minimum swaps
// required to club all
// elements less than
// or equals to k together
function minSwap( $arr , $n , $k )
{
// Find count of elements
// which are less than
// equals to k
$count = 0;
for ( $i = 0; $i < $n ; ++ $i )
if ( $arr [ $i ] <= $k )
++ $count ;
// Find unwanted elements in current
// window of size 'count'
$bad = 0;
for ( $i = 0; $i < $count ; ++ $i )
if ( $arr [ $i ] > $k )
++ $bad ;
// Initialize answer
// with 'bad' value of
// current window
$ans = $bad ;
for ( $i = 0, $j = $count ; $j < $n ;
++ $i , ++ $j )
{
// Decrement count of
// previous window
if ( $arr [ $i ] > $k )
-- $bad ;
// Increment count of
// current window
if ( $arr [ $j ] > $k )
++ $bad ;
// Update ans if count of 'bad'
// is less in current window
$ans = min( $ans , $bad );
}
return $ans ;
}
// Driver code
$arr = array (2, 1, 5, 6, 3);
$n = sizeof( $arr );
$k = 3;
echo (minSwap( $arr , $n , $k ) . "\n" );
$arr1 = array (2, 7, 9, 5, 8, 7, 4);
$n = sizeof( $arr1 );
$k = 5;
echo (minSwap( $arr1 , $n , $k ));
// This code is contributed by Ajit.
?>
输出:
1
2
时间复杂度:O(n)
辅助空间:O(1)