算法:将所有小于或等于k的元素组合在一起所需的最小交换

2021年3月29日18:04:36 发表评论 865 次浏览

本文概述

给定一个由n个正整数和一个数字k组成的数组。找出将所有小于或等于k的数字放在一起所需的最小交换次数。

Input:  arr[] = {2, 1, 5, 6, 3}, k = 3
Output: 1

Explanation: 
To bring elements 2, 1, 3 together, swap 
element '5' with '3' such that final array
will be-
arr[] = {2, 1, 3, 6, 5}

Input:  arr[] = {2, 7, 9, 5, 8, 7, 4}, k = 5
Output: 2

一个简单的解决方案是,首先计算所有小于或等于k的元素(说‘好’)。现在遍历每个子数组,并交换值大于k的元素。这种方法的时间复杂度为O(n^2)

一种简单的方法是使用两个指针技术和滑动窗口。

1)查找所有小于或等于" k"的元素的计数。假设计数是" cnt"

2)对长度为" cnt"的窗口使用两个指针技术, 每次都跟踪该范围内有多少个元素大于" k"。假设总数为"bad"。

3)对每个长度为" cnt"的窗口重复步骤2, 并在其中最少计数为"bad"。这将是最终答案。

C ++

// C++ program to find minimum swaps required
// to club all elements less than or equals
// to k together
#include <iostream>
using namespace std;
  
// Utility function to find minimum swaps
// required to club all elements less than
// or equals to k together
int minSwap( int *arr, int n, int k) {
      
     // Find count of elements which are
     // less than equals to k
     int count = 0;
     for ( int i = 0; i < n; ++i)
         if (arr[i] <= k)
             ++count;
      
     // Find unwanted elements in current
     // window of size 'count'
     int bad = 0;
     for ( int i = 0; i < count; ++i)
         if (arr[i] > k)
             ++bad;
      
     // Initialize answer with 'bad' value of
     // current window
     int ans = bad;
     for ( int i = 0, j = count; j < n; ++i, ++j) {
          
         // Decrement count of previous window
         if (arr[i] > k)
             --bad;
          
         // Increment count of current window
         if (arr[j] > k)
             ++bad;
          
         // Update ans if count of 'bad'
         // is less in current window
         ans = min(ans, bad);
     }
     return ans;
}
  
// Driver code
int main() {
      
     int arr[] = {2, 1, 5, 6, 3};
     int n = sizeof (arr) / sizeof (arr[0]);
     int k = 3;
     cout << minSwap(arr, n, k) << "\n" ;
      
     int arr1[] = {2, 7, 9, 5, 8, 7, 4};
     n = sizeof (arr1) / sizeof (arr1[0]);
     k = 5;
     cout << minSwap(arr1, n, k);
     return 0;
}

Java

// Java program to find minimum 
// swaps required to club all
// elements less than or equals
// to k together
import java.lang.*;
  
class GFG {
      
// Utility function to find minimum swaps
// required to club all elements less than
// or equals to k together
static int minSwap( int arr[], int n, int k) {
  
     // Find count of elements which are
     // less than equals to k
     int count = 0 ;
     for ( int i = 0 ; i < n; ++i)
     if (arr[i] <= k)
         ++count;
  
     // Find unwanted elements in current
     // window of size 'count'
     int bad = 0 ;
     for ( int i = 0 ; i < count; ++i)
     if (arr[i] > k)
         ++bad;
  
     // Initialize answer with 'bad' value of
     // current window
     int ans = bad;
     for ( int i = 0 , j = count; j < n; ++i, ++j) {
  
     // Decrement count of previous window
     if (arr[i] > k)
         --bad;
  
     // Increment count of current window
     if (arr[j] > k)
         ++bad;
  
     // Update ans if count of 'bad'
     // is less in current window
     ans = Math.min(ans, bad);
     }
     return ans;
}
  
// Driver code
public static void main(String[] args) 
{
     int arr[] = { 2 , 1 , 5 , 6 , 3 };
     int n = arr.length;
     int k = 3 ;
     System.out.print(minSwap(arr, n, k) + "\n" );
  
     int arr1[] = { 2 , 7 , 9 , 5 , 8 , 7 , 4 };
     n = arr1.length;
     k = 5 ;
     System.out.print(minSwap(arr1, n, k));
}
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python3 program to find 
# minimum swaps required
# to club all elements less
# than or equals to k together
  
# Utility function to find 
# minimum swaps required to 
# club all elements less than
# or equals to k together
def minSwap(arr, n, k) :
      
     # Find count of elements
     # which are less than 
     # equals to k
     count = 0
     for i in range ( 0 , n) :
         if (arr[i] < = k) :
             count = count + 1
      
     # Find unwanted elements 
     # in current window of 
     # size 'count'
     bad = 0
     for i in range ( 0 , count) :
         if (arr[i] > k) :
             bad = bad + 1
      
     # Initialize answer with 
     # 'bad' value of current
     # window
     ans = bad
     j = count
     for i in range ( 0 , n) :
          
         if (j = = n) :
             break
              
         # Decrement count of
         # previous window
         if (arr[i] > k) :
             bad = bad - 1
          
         # Increment count of 
         # current window
         if (arr[j] > k) :
             bad = bad + 1
          
         # Update ans if count 
         # of 'bad' is less in
         # current window
         ans = min (ans, bad)
  
         j = j + 1
  
     return ans
  
# Driver code
arr = [ 2 , 1 , 5 , 6 , 3 ]
n = len (arr)
k = 3
print (minSwap(arr, n, k))
  
arr1 = [ 2 , 7 , 9 , 5 , 8 , 7 , 4 ]
n = len (arr1)
k = 5
print (minSwap(arr1, n, k))
  
# This code is contributed by 
# Manish Shaw(manishshaw1)

C#

// C# program to find minimum 
// swaps required to club all
// elements less than or equals
// to k together
using System;
  
class GFG {
      
     // Utility function to find minimum swaps
     // required to club all elements less than
     // or equals to k together
     static int minSwap( int []arr, int n, int k) {
      
         // Find count of elements which are
         // less than equals to k
         int count = 0;
         for ( int i = 0; i < n; ++i)
         if (arr[i] <= k)
             ++count;
      
         // Find unwanted elements in current
         // window of size 'count'
         int bad = 0;
         for ( int i = 0; i < count; ++i)
         if (arr[i] > k)
             ++bad;
      
         // Initialize answer with 'bad' value of
         // current window
         int ans = bad;
         for ( int i = 0, j = count; j < n; ++i, ++j) {
      
             // Decrement count of previous window
             if (arr[i] > k)
                 --bad;
          
             // Increment count of current window
             if (arr[j] > k)
                 ++bad;
          
             // Update ans if count of 'bad'
             // is less in current window
             ans = Math.Min(ans, bad);
         }
         return ans;
     }
      
     // Driver code
     public static void Main() 
     {
         int []arr = {2, 1, 5, 6, 3};
         int n = arr.Length;
         int k = 3;
         Console.WriteLine(minSwap(arr, n, k));
      
         int []arr1 = {2, 7, 9, 5, 8, 7, 4};
         n = arr1.Length;
         k = 5;
         Console.WriteLine(minSwap(arr1, n, k));
     }
}
  
// This code is contributed by vt_m.

的PHP

<?php
// PHP program to find
// minimum swaps required
// to club all elements 
// less than or equals
// to k together
  
// Utility function to 
// find minimum swaps
// required to club all 
// elements less than
// or equals to k together
function minSwap( $arr , $n , $k )
{
      
     // Find count of elements
     // which are less than
     // equals to k
     $count = 0;
     for ( $i = 0; $i < $n ; ++ $i )
         if ( $arr [ $i ] <= $k )
             ++ $count ;
      
     // Find unwanted elements in current
     // window of size 'count'
     $bad = 0;
     for ( $i = 0; $i < $count ; ++ $i )
         if ( $arr [ $i ] > $k )
             ++ $bad ;
      
     // Initialize answer 
     // with 'bad' value of
     // current window
     $ans = $bad ;
     for ( $i = 0, $j = $count ; $j < $n ; 
                            ++ $i , ++ $j ) 
     {
          
         // Decrement count of 
         // previous window
         if ( $arr [ $i ] > $k )
             -- $bad ;
          
         // Increment count of
         // current window
         if ( $arr [ $j ] > $k )
             ++ $bad ;
          
         // Update ans if count of 'bad'
         // is less in current window
         $ans = min( $ans , $bad );
     }
     return $ans ;
}
  
// Driver code
$arr = array (2, 1, 5, 6, 3);
$n = sizeof( $arr );
$k = 3;
echo (minSwap( $arr , $n , $k ) . "\n" );
      
$arr1 = array (2, 7, 9, 5, 8, 7, 4);
$n = sizeof( $arr1 );
$k = 5;
echo (minSwap( $arr1 , $n , $k ));
  
// This code is contributed by Ajit.
?>

输出:

1
2

时间复杂度:O(n)

辅助空间:O(1)


木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: