本文概述
深度优先遍历(或搜索)对于图类似于一棵树的深度优先搜索。唯一的问题是, 与树不同, 图可能包含循环, 一个节点可能被访问两次。为避免多次处理节点, 请使用布尔访问数组。
例子:
输入:n = 4, e = 6
0-> 1, 0-> 2, 1-> 2, 2-> 0, 2-> 3, 3-> 3
输出:来自顶点的DFS 1:1 2 0 3
说明:DFS图:
输入:n = 4, e = 6
2-> 0, 0-> 2, 1-> 2, 0-> 1, 3-> 3, 1-> 3
输出:来自顶点2的DFS:2 0 1 3
说明:DFS图:
先决条件:看到这个帖子适用于深度优先搜索的所有应用。
以下是简单的深度优先搜索的实现。 C ++实现使用邻接表表示图。STL‘s列出容器用于存储相邻节点的列表。
解:
方法:
深度优先搜索是一种用于遍历或搜索树或图数据结构的算法。该算法从根节点开始(在图形的情况下, 选择任意节点作为根节点), 并在回溯之前沿每个分支尽可能地探索。因此, 基本思想是从根节点或任意节点开始, 标记该节点, 然后移至相邻的未标记节点, 然后继续此循环, 直到没有未标记的相邻节点为止。然后回溯并检查其他未标记的节点并搜索它们。最后打印路径中的节点。
算法:
- 创建一个递归函数, 该函数采用节点和已访问数组的索引。
- 将当前节点标记为已访问并打印该节点。
- 遍历所有相邻和未标记的节点, 并使用相邻节点的索引调用递归函数。
实现
C ++
// C++ program to print DFS traversal from
// a given vertex in a given graph
#include<bits/stdc++.h>
using namespace std;
// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
int V; // No. of vertices
// Pointer to an array containing
// adjacency lists
list< int > *adj;
// A recursive function used by DFS
void DFSUtil( int v, bool visited[]);
public :
Graph( int V); // Constructor
// function to add an edge to graph
void addEdge( int v, int w);
// DFS traversal of the vertices
// reachable from v
void DFS( int v);
};
Graph::Graph( int V)
{
this ->V = V;
adj = new list< int >[V];
}
void Graph::addEdge( int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::DFSUtil( int v, bool visited[])
{
// Mark the current node as visited and
// print it
visited[v] = true ;
cout << v << " " ;
// Recur for all the vertices adjacent
// to this vertex
list< int >::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS( int v)
{
// Mark all the vertices as not visited
bool *visited = new bool [V];
for ( int i = 0; i < V; i++)
visited[i] = false ;
// Call the recursive helper function
// to print DFS traversal
DFSUtil(v, visited);
}
// Driver code
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Following is Depth First Traversal"
" (starting from vertex 2) \n" ;
g.DFS(2);
return 0;
}
Java
// Java program to print DFS traversal from a given given graph
import java.io.*;
import java.util.*;
// This class represents a directed graph using adjacency list
// representation
class Graph
{
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private LinkedList<Integer> adj[];
// Constructor
@SuppressWarnings ( "unchecked" )
Graph( int v)
{
V = v;
adj = new LinkedList[v];
for ( int i= 0 ; i<v; ++i)
adj[i] = new LinkedList();
}
//Function to add an edge into the graph
void addEdge( int v, int w)
{
adj[v].add(w); // Add w to v's list.
}
// A function used by DFS
void DFSUtil( int v, boolean visited[])
{
// Mark the current node as visited and print it
visited[v] = true ;
System.out.print(v+ " " );
// Recur for all the vertices adjacent to this vertex
Iterator<Integer> i = adj[v].listIterator();
while (i.hasNext())
{
int n = i.next();
if (!visited[n])
DFSUtil(n, visited);
}
}
// The function to do DFS traversal. It uses recursive DFSUtil()
void DFS( int v)
{
// Mark all the vertices as not visited(set as
// false by default in java)
boolean visited[] = new boolean [V];
// Call the recursive helper function to print DFS traversal
DFSUtil(v, visited);
}
public static void main(String args[])
{
Graph g = new Graph( 4 );
g.addEdge( 0 , 1 );
g.addEdge( 0 , 2 );
g.addEdge( 1 , 2 );
g.addEdge( 2 , 0 );
g.addEdge( 2 , 3 );
g.addEdge( 3 , 3 );
System.out.println( "Following is Depth First Traversal " +
"(starting from vertex 2)" );
g.DFS( 2 );
}
}
// This code is contributed by Aakash Hasija
Python3
# Python3 program to print DFS traversal
# from a given given graph
from collections import defaultdict
# This class represents a directed graph using
# adjacency list representation
class Graph:
# Constructor
def __init__( self ):
# default dictionary to store graph
self .graph = defaultdict( list )
# function to add an edge to graph
def addEdge( self , u, v):
self .graph[u].append(v)
# A function used by DFS
def DFSUtil( self , v, visited):
# Mark the current node as visited
# and print it
visited[v] = True
print (v, end = ' ' )
# Recur for all the vertices
# adjacent to this vertex
for i in self .graph[v]:
if visited[i] = = False :
self .DFSUtil(i, visited)
# The function to do DFS traversal. It uses
# recursive DFSUtil()
def DFS( self , v):
# Mark all the vertices as not visited
visited = [ False ] * ( max ( self .graph) + 1 )
# Call the recursive helper function
# to print DFS traversal
self .DFSUtil(v, visited)
# Driver code
# Create a graph given
# in the above diagram
g = Graph()
g.addEdge( 0 , 1 )
g.addEdge( 0 , 2 )
g.addEdge( 1 , 2 )
g.addEdge( 2 , 0 )
g.addEdge( 2 , 3 )
g.addEdge( 3 , 3 )
print ( "Following is DFS from (starting from vertex 2)" )
g.DFS( 2 )
# This code is contributed by Neelam Yadav
C#
// C# program to print DFS traversal
// from a given graph
using System;
using System.Collections.Generic;
// This class represents a directed graph
// using adjacency list representation
class Graph
{
private int V; // No. of vertices
// Array of lists for
// Adjacency List Representation
private List< int >[] adj;
// Constructor
Graph( int v)
{
V = v;
adj = new List< int >[v];
for ( int i = 0; i < v; ++i)
adj[i] = new List< int >();
}
//Function to Add an edge into the graph
void AddEdge( int v, int w)
{
adj[v].Add(w); // Add w to v's list.
}
// A function used by DFS
void DFSUtil( int v, bool [] visited)
{
// Mark the current node as visited
// and print it
visited[v] = true ;
Console.Write(v + " " );
// Recur for all the vertices
// adjacent to this vertex
List< int > vList = adj[v];
foreach ( var n in vList)
{
if (!visited[n])
DFSUtil(n, visited);
}
}
// The function to do DFS traversal.
// It uses recursive DFSUtil()
void DFS( int v)
{
// Mark all the vertices as not visited
// (set as false by default in c#)
bool [] visited = new bool [V];
// Call the recursive helper function
// to print DFS traversal
DFSUtil(v, visited);
}
// Driver Code
public static void Main(String[] args)
{
Graph g = new Graph(4);
g.AddEdge(0, 1);
g.AddEdge(0, 2);
g.AddEdge(1, 2);
g.AddEdge(2, 0);
g.AddEdge(2, 3);
g.AddEdge(3, 3);
Console.WriteLine( "Following is Depth First Traversal " +
"(starting from vertex 2)" );
g.DFS(2);
Console.ReadKey();
}
}
// This code is contributed by techno2mahi
输出如下:
Following is Depth First Traversal (starting from vertex 2)
2 0 1 3
复杂度分析:
- 时间复杂度:O(V + E), 其中V是顶点数, E是图形中边的数量。
- 空间复杂度:O(V)。
由于需要一个额外的访问数组, 其大小为V。
处理断开的图
解:
这将通过处理极端情况来发生。
上面的代码仅遍历从给定源顶点可到达的顶点。像"断开图"的情况一样, 可能无法从给定的顶点到达所有顶点。要完成此类图的DFS搜索, 请在DFS之后从所有未访问的节点运行DFS。
递归函数保持不变。
算法:
- 创建一个递归函数, 该函数采用节点和已访问数组的索引。
- 将当前节点标记为已访问并打印该节点。
- 遍历所有相邻和未标记的节点, 并使用相邻节点的索引调用递归函数。
- 运行从0到顶点数的循环, 并检查是否在以前的DFS中未访问该节点, 然后使用当前节点调用递归函数。
实现
C ++
// C++ program to print DFS traversal for a given given graph
#include<bits/stdc++.h>
using namespace std;
class Graph
{
int V; // No. of vertices
list< int > *adj; // Pointer to an array containing adjacency lists
void DFSUtil( int v, bool visited[]); // A function used by DFS
public :
Graph( int V); // Constructor
void addEdge( int v, int w); // function to add an edge to graph
void DFS(); // prints DFS traversal of the complete graph
};
Graph::Graph( int V)
{
this ->V = V;
adj = new list< int >[V];
}
void Graph::addEdge( int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::DFSUtil( int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true ;
cout << v << " " ;
// Recur for all the vertices adjacent to this vertex
list< int >::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// The function to do DFS traversal. It uses recursive DFSUtil()
void Graph::DFS()
{
// Mark all the vertices as not visited
bool *visited = new bool [V];
for ( int i = 0; i < V; i++)
visited[i] = false ;
// Call the recursive helper function to print DFS traversal
// starting from all vertices one by one
for ( int i = 0; i < V; i++)
if (visited[i] == false )
DFSUtil(i, visited);
}
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Following is Depth First Traversaln" ;
g.DFS();
return 0;
}
Java
// Java program to print DFS traversal from a given given graph
import java.io.*;
import java.util.*;
// This class represents a directed graph using adjacency list
// representation
class Graph
{
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private LinkedList<Integer> adj[];
// Constructor
@SuppressWarnings ( "unchecked" )
Graph( int v)
{
V = v;
adj = new LinkedList[v];
for ( int i= 0 ; i<v; ++i)
adj[i] = new LinkedList();
}
//Function to add an edge into the graph
void addEdge( int v, int w)
{
adj[v].add(w); // Add w to v's list.
}
// A function used by DFS
void DFSUtil( int v, boolean visited[])
{
// Mark the current node as visited and print it
visited[v] = true ;
System.out.print(v+ " " );
// Recur for all the vertices adjacent to this vertex
Iterator<Integer> i = adj[v].listIterator();
while (i.hasNext())
{
int n = i.next();
if (!visited[n])
DFSUtil(n, visited);
}
}
// The function to do DFS traversal. It uses recursive DFSUtil()
void DFS()
{
// Mark all the vertices as not visited(set as
// false by default in java)
boolean visited[] = new boolean [V];
// Call the recursive helper function to print DFS traversal
// starting from all vertices one by one
for ( int i= 0 ; i<V; ++i)
if (visited[i] == false )
DFSUtil(i, visited);
}
public static void main(String args[])
{
Graph g = new Graph( 4 );
g.addEdge( 0 , 1 );
g.addEdge( 0 , 2 );
g.addEdge( 1 , 2 );
g.addEdge( 2 , 0 );
g.addEdge( 2 , 3 );
g.addEdge( 3 , 3 );
System.out.println( "Following is Depth First Traversal" );
g.DFS();
}
}
// This code is contributed by Aakash Hasija
python
# Python program to print DFS traversal for complete graph
from collections import defaultdict
# This class represents a directed graph using adjacency
# list representation
class Graph:
# Constructor
def __init__( self ):
# default dictionary to store graph
self .graph = defaultdict( list )
# function to add an edge to graph
def addEdge( self , u, v):
self .graph[u].append(v)
# A function used by DFS
def DFSUtil( self , v, visited):
# Mark the current node as visited and print it
visited[v] = True
print v, # Recur for all the vertices adjacent to
# this vertex
for i in self .graph[v]:
if visited[i] = = False :
self .DFSUtil(i, visited)
# The function to do DFS traversal. It uses
# recursive DFSUtil()
def DFS( self ):
V = len ( self .graph) #total vertices
# Mark all the vertices as not visited
visited = [ False ] * (V)
# Call the recursive helper function to print
# DFS traversal starting from all vertices one
# by one
for i in range (V):
if visited[i] = = False :
self .DFSUtil(i, visited)
# Driver code
# Create a graph given in the above diagram
g = Graph()
g.addEdge( 0 , 1 )
g.addEdge( 0 , 2 )
g.addEdge( 1 , 2 )
g.addEdge( 2 , 0 )
g.addEdge( 2 , 3 )
g.addEdge( 3 , 3 )
print "Following is Depth First Traversal"
g.DFS()
# This code is contributed by Neelam Yadav
C#
// C# program to print DFS traversal from a given given graph
using System;
using System.Collections.Generic;
// This class represents a directed graph using adjacency list
// representation
public class Graph
{
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private List< int > []adj;
// Constructor
Graph( int v)
{
V = v;
adj = new List< int >[v];
for ( int i = 0; i < v; ++i)
adj[i] = new List< int >();
}
//Function to add an edge into the graph
void addEdge( int v, int w)
{
adj[v].Add(w); // Add w to v's list.
}
// A function used by DFS
void DFSUtil( int v, bool []visited)
{
// Mark the current node as visited and print it
visited[v] = true ;
Console.Write(v + " " );
// Recur for all the vertices adjacent to this vertex
foreach ( int i in adj[v])
{
int n = i;
if (!visited[n])
DFSUtil(n, visited);
}
}
// The function to do DFS traversal. It uses recursive DFSUtil()
void DFS()
{
// Mark all the vertices as not visited(set as
// false by default in java)
bool []visited = new bool [V];
// Call the recursive helper function to print DFS traversal
// starting from all vertices one by one
for ( int i = 0; i < V; ++i)
if (visited[i] == false )
DFSUtil(i, visited);
}
// Driver code
public static void Main(String []args)
{
Graph g = new Graph(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
Console.WriteLine( "Following is Depth First Traversal" );
g.DFS();
}
}
// This code is contributed by PrinciRaj1992
输出如下:
Following is Depth First Traversal
0 1 2 3
复杂度分析:
- 时间复杂度:O(V + E), 其中V是顶点数, E是图形中边的数量。
- 空间复杂度:O(V)。
由于需要一个额外的访问数组, 其大小为V。
- DFS的应用。
- 图的广度优先搜索
- 关于DFS的最新文章
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。