本文概述
考虑一个大小为n的数组,所有初始值都为0,我们需要执行以下m个范围递增操作。
increment(a, b, k) : Increment values from 'a'
to 'b' by 'k'.
经过m次运算后, 我们需要计算数组中的最大值。
例子:
Input : n = 5 m = 3
a = 0, b = 1, k = 100
a = 1, b = 4, k = 100
a = 2, b = 3, k = 100
Output : 200
Explanation:
Initially array = {0, 0, 0, 0, 0}
After first operation:
array = {100, 100, 0, 0, 0}
After second operation:
array = {100, 200, 100, 100, 100}
After third operation:
array = {100, 200, 200, 200, 100}
Maximum element after m operations
is 200.
Input : n = 4 m = 3
a = 1, b = 2, k = 603
a = 0, b = 0, k = 286
a = 3, b = 3, k = 882
Output : 882
Explanation:
Initially array = {0, 0, 0, 0}
After first operation:
array = {0, 603, 603, 0}
After second operation:
array = {286, 603, 603, 0}
After third operation:
array = {286, 603, 603, 882}
Maximum element after m operations
is 882.
一种天真的方法是在给定范围内执行每个操作, 然后最后找到最大数量。
C++
// C++ implementation of simple approach to
// find maximum value after m range increments.
#include<bits/stdc++.h>
using namespace std;
// Function to find the maximum element after
// m operations
int findMax( int n, int a[], int b[], int k[], int m)
{
int arr[n];
memset (arr, 0, sizeof (arr));
// start performing m operations
for ( int i = 0; i< m; i++)
{
// Store lower and upper index i.e. range
int lowerbound = a[i];
int upperbound = b[i];
// Add 'k[i]' value at this operation to
// whole range
for ( int j=lowerbound; j<=upperbound; j++)
arr[j] += k[i];
}
// Find maximum value after all operations and
// return
int res = INT_MIN;
for ( int i=0; i<n; i++)
res = max(res, arr[i]);
return res;
}
// Driver code
int main()
{
// Number of values
int n = 5;
int a[] = {0, 1, 2};
int b[] = {1, 4, 3};
// value of k to be added at each operation
int k[] = {100, 100, 100};
int m = sizeof (a)/ sizeof (a[0]);
cout << "Maximum value after 'm' operations is "
<< findMax(n, a, b, k, m);
return 0;
}
Java
// Java implementation of simple approach
// to find maximum value after m range
// increments.
import java.util.*;
class GFG{
// Function to find the maximum element after
// m operations
static int findMax( int n, int a[], int b[], int k[], int m)
{
int [] arr = new int [n];
// Start performing m operations
for ( int i = 0 ; i < m; i++)
{
// Store lower and upper index i.e. range
int lowerbound = a[i];
int upperbound = b[i];
// Add 'k[i]' value at this operation to
// whole range
for ( int j = lowerbound; j <= upperbound; j++)
arr[j] += k[i];
}
// Find maximum value after all
// operations and return
int res = Integer.MIN_VALUE;
for ( int i = 0 ; i < n; i++)
res = Math.max(res, arr[i]);
return res;
}
// Driver Code
public static void main (String[] args)
{
// Number of values
int n = 5 ;
int a[] = { 0 , 1 , 2 };
int b[] = { 1 , 4 , 3 };
// Value of k to be added at
// each operation
int k[] = { 100 , 100 , 100 };
int m = a.length;
System.out.println( "Maximum value after 'm' " +
"operations is " +
findMax(n, a, b, k, m));
}
}
// This code is contributed by offbeat
Python3
# Python3 progrma of
# simple approach to
# find maximum value
# after m range increments.
import sys
# Function to find the
# maximum element after
# m operations
def findMax(n, a, b, k, m):
arr = [ 0 ] * n
# Start performing m operations
for i in range (m):
# Store lower and upper
# index i.e. range
lowerbound = a[i]
upperbound = b[i]
# Add 'k[i]' value at
# this operation to whole range
for j in range (lowerbound, upperbound + 1 ):
arr[j] + = k[i]
# Find maximum value after
# all operations and return
res = - sys.maxsize - 1
for i in range (n):
res = max (res, arr[i])
return res
# Driver code
if __name__ = = "__main__" :
# Number of values
n = 5
a = [ 0 , 1 , 2 ]
b = [ 1 , 4 , 3 ]
# Value of k to be added
# at each operation
k = [ 100 , 100 , 100 ]
m = len (a)
print ( "Maximum value after 'm' operations is " , findMax(n, a, b, k, m))
# This code is contributed by Chitranayal
输出如下:
Maximum value after 'm' operations is 200
时间复杂度:O(m * max(range))。此处的max(range)表示在单个操作中将k添加到的最大元素。
高效的方法:
这个想法类似于
这个
发布。
只需一次操作即可完成两件事:
1-将k值添加到范围的lower_bound。
2-通过k值减少upper_bound +1索引。
毕竟, 进行操作, 将所有值相加, 检查最大和, 然后打印最大和。
C++
// C++ implementation of simple approach to
// find maximum value after m range increments.
#include<bits/stdc++.h>
using namespace std;
// Function to find maximum value after 'm' operations
int findMax( int n, int m, int a[], int b[], int k[])
{
int arr[n+1];
memset (arr, 0, sizeof (arr));
// Start performing 'm' operations
for ( int i=0; i<m; i++)
{
// Store lower and upper index i.e. range
int lowerbound = a[i];
int upperbound = b[i];
// Add k to the lower_bound
arr[lowerbound] += k[i];
// Reduce upper_bound+1 indexed value by k
arr[upperbound+1] -= k[i];
}
// Find maximum sum possible from all values
long long sum = 0, res = INT_MIN;
for ( int i=0; i < n; ++i)
{
sum += arr[i];
res = max(res, sum);
}
// return maximum value
return res;
}
// Driver code
int main()
{
// Number of values
int n = 5;
int a[] = {0, 1, 2};
int b[] = {1, 4, 3};
int k[] = {100, 100, 100};
// m is number of operations.
int m = sizeof (a)/ sizeof (a[0]);
cout << "Maximum value after 'm' operations is "
<< findMax(n, m, a, b, k);
return 0;
}
Java
// Java implementation of
// simple approach to
// find maximum value after
// m range increments.
import java.io.*;
class GFG
{
// Function to find maximum
// value after 'm' operations
static long findMax( int n, int m, int a[], int b[], int k[])
{
int []arr = new int [n + 1 ];
//memset(arr, 0, sizeof(arr));
// Start performing 'm' operations
for ( int i = 0 ; i < m; i++)
{
// Store lower and upper
// index i.e. range
int lowerbound = a[i];
int upperbound = b[i];
// Add k to the lower_bound
arr[lowerbound] += k[i];
// Reduce upper_bound+1
// indexed value by k
arr[upperbound + 1 ] -= k[i];
}
// Find maximum sum
// possible from all values
long sum = 0 , res = Integer.MIN_VALUE;
for ( int i = 0 ; i < n; ++i)
{
sum += arr[i];
res = Math.max(res, sum);
}
// return maximum value
return res;
}
// Driver code
public static void main (String[] args)
{
// Number of values
int n = 5 ;
int a[] = { 0 , 1 , 2 };
int b[] = { 1 , 4 , 3 };
int k[] = { 100 , 100 , 100 };
// m is number of operations.
int m = a.length;
System.out.println( "Maximum value after " +
"'m' operations is " +
findMax(n, m, a, b, k));
}
}
// This code is contributed by anuj_67.
输出如下:
Maximum value after 'm' operations is 200