本文概述
给定n个鸡蛋和k个地板, 找到在最坏情况下找到所有地板都安全的地板所需的最少试验次数。如果从地板上扔鸡蛋不会破坏鸡蛋, 则地板是安全的。请参阅n个鸡蛋和k层地板。完整的陈述
Input : n = 2, k = 10
Output : 4
We first try from 4-th floor. Two cases arise, (1) If egg breaks, we have one egg left so we
need three more trials.
(2) If egg does not break, we try next from 7-th
floor. Again two cases arise.
We can notice that if we choose 4th floor as first
floor, 7-th as next floor and 9 as next of next floor, we never exceed more than 4 trials.
Input : n = 2. k = 100
Output : 14
推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。
我们已经讨论了这个问题2个鸡蛋和k层。我们还讨论了动态编程解决方案寻找解决方案。动态编程解决方案基于问题的以下递归性质。让我们从另一个角度来看待讨论的递归公式。
我们可以用x次试验覆盖几层?
当我们放一个鸡蛋时, 会出现两种情况。
- 如果鸡蛋破裂, 那么我们将进行x-1次试验和n-1个鸡蛋。
- 如果鸡蛋没有破裂, 那么我们将进行x-1次试验和n个鸡蛋
Let maxFloors(x, n) be the maximum number of floors
that we can cover with x trials and n eggs. From above
two cases, we can write.
maxFloors(x, n) = maxFloors(x-1, n-1) + maxFloors(x-1, n) + 1
For all x >= 1 and n >= 1
Base cases :
We can't cover any floor with 0 trials or 0 eggs
maxFloors(0, n) = 0
maxFloors(x, 0) = 0
Since we need to cover k floors, maxFloors(x, n) >= k ----------(1)
The above recurrence simplifies to following, Refer this for proof.
maxFloors(x, n) = ∑xCi
1 <= i <= n ----------(2)
Here C represents Binomial Coefficient.
From above two equations, we can say.
∑xCj >= k
1 <= i <= n
Basically we need to find minimum value of x
that satisfies above inequality. We can find
such x using Binary Search.
C ++
// C++ program to find minimum
// number of trials in worst case.
#include <bits/stdc++.h>
using namespace std;
// Find sum of binomial coefficients xCi
// (where i varies from 1 to n).
int binomialCoeff( int x, int n)
{
int sum = 0, term = 1;
for ( int i = 1; i <= n; ++i) {
term *= x - i + 1;
term /= i;
sum += term;
}
return sum;
}
// Do binary search to find minimum
// number of trials in worst case.
int minTrials( int n, int k)
{
// Initialize low and high as 1st
// and last floors
int low = 1, high = k;
// Do binary search, for every mid, // find sum of binomial coefficients and
// check if the sum is greater than k or not.
while (low < high) {
int mid = (low + high) / 2;
if (binomialCoeff(mid, n) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
/* Driver program to test above function*/
int main()
{
cout << minTrials(2, 10);
return 0;
}
Java
// Java program to find minimum
// number of trials in worst case.
class Geeks {
// Find sum of binomial coefficients xCi
// (where i varies from 1 to n). If the sum
// becomes more than K
static int binomialCoeff( int x, int n, int k)
{
int sum = 0 , term = 1 ;
for ( int i = 1 ; i <= n && sum < k; ++i) {
term *= x - i + 1 ;
term /= i;
sum += term;
}
return sum;
}
// Do binary search to find minimum
// number of trials in worst case.
static int minTrials( int n, int k)
{
// Initialize low and high as 1st
//and last floors
int low = 1 , high = k;
// Do binary search, for every mid, // find sum of binomial coefficients and
// check if the sum is greater than k or not.
while (low < high) {
int mid = (low + high) / 2 ;
if (binomialCoeff(mid, n, k) < k)
low = mid + 1 ;
else
high = mid;
}
return low;
}
/* Driver program to test above function*/
public static void main(String args[])
{
System.out.println(minTrials( 2 , 10 ));
}
}
// This code is contributed by ankita_saini
Python3
# Python3 program to find minimum
# number of trials in worst case.
# Find sum of binomial coefficients
# xCi (where i varies from 1 to n).
# If the sum becomes more than K
def binomialCoeff(x, n, k):
sum = 0 ;
term = 1 ;
i = 1 ;
while (i < = n and sum < k):
term * = x - i + 1 ;
term / = i;
sum + = term;
i + = 1 ;
return sum ;
# Do binary search to find minimum
# number of trials in worst case.
def minTrials(n, k):
# Initialize low and high as
# 1st and last floors
low = 1 ;
high = k;
# Do binary search, for every
# mid, find sum of binomial
# coefficients and check if
# the sum is greater than k or not.
while (low < high):
mid = (low + high) / 2 ;
if (binomialCoeff(mid, n, k) < k):
low = mid + 1 ;
else :
high = mid;
return int (low);
# Driver Code
print (minTrials( 2 , 10 ));
# This code is contributed
# by mits
C#
// C# program to find minimum
// number of trials in worst case.
using System;
class GFG
{
// Find sum of binomial coefficients
// xCi (where i varies from 1 to n).
// If the sum becomes more than K
static int binomialCoeff( int x, int n, int k)
{
int sum = 0, term = 1;
for ( int i = 1;
i <= n && sum < k; ++i)
{
term *= x - i + 1;
term /= i;
sum += term;
}
return sum;
}
// Do binary search to find minimum
// number of trials in worst case.
static int minTrials( int n, int k)
{
// Initialize low and high
// as 1st and last floors
int low = 1, high = k;
// Do binary search, for every
// mid, find sum of binomial
// coefficients and check if the
// sum is greater than k or not.
while (low < high)
{
int mid = (low + high) / 2;
if (binomialCoeff(mid, n, k) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver Code
public static void Main()
{
Console.WriteLine(minTrials(2, 10));
}
}
// This code is contributed
// by Akanksha Rai(Abby_akku)
的PHP
<?php
// PHP program to find minimum
// number of trials in worst case.
// Find sum of binomial coefficients
// xCi (where i varies from 1 to n).
// If the sum becomes more than K
function binomialCoeff( $x , $n , $k )
{
$sum = 0; $term = 1;
for ( $i = 1; $i <= $n &&
$sum < $k ; ++ $i )
{
$term *= $x - $i + 1;
$term /= $i ;
$sum += $term ;
}
return $sum ;
}
// Do binary search to find minimum
// number of trials in worst case.
function minTrials( $n , $k )
{
// Initialize low and high as
// 1st and last floors
$low = 1; $high = $k ;
// Do binary search, for every
// mid, find sum of binomial
// coefficients and check if
// the sum is greater than k or not.
while ( $low < $high )
{
$mid = ( $low + $high ) / 2;
if (binomialCoeff( $mid , $n , $k ) < $k )
$low = $mid + 1;
else
$high = $mid ;
}
return (int) $low ;
}
// Driver Code
echo minTrials(2, 10);
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>
输出如下:
4
时间复杂度:O(n Log k)