本文概述
给定一个正整数数组, 找到数组中存在的元素的LCM。
例子:
Input : arr[] = {1, 2, 3, 4, 28}
Output : 84
Input : arr[] = {4, 6, 12, 24, 30}
Output : 120
推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。
我们已经讨论过使用GCD的阵列的LCM.
本文讨论了一种无需计算GCD的其他方法。以下是步骤。
- 初始化结果= 1
- 查找两个或更多数组元素的公因子。
- 将结果乘以公因数, 然后将所有数组元素除以该公因数。
- 当存在两个或更多元素的公因数时, 重复步骤2和3。
- 将结果乘以减少(或分割)的数组元素。
插图:
Let we have to find the LCM of
arr[] = {1, 2, 3, 4, 28}
We initialize result = 1.
2 is a common factor that appears in
two or more elements. We divide all
multiples by two and multiply result
with 2.
arr[] = {1, 1, 3, 2, 14}
result = 2
2 is again a common factor that appears
in two or more elements. We divide all
multiples by two and multiply result
with 2.
arr[] = {1, 1, 3, 1, 7}
result = 4
Now there is no common factor that appears
in two or more array elements. We multiply
all modified array elements with result, we
get.
result = 4 * 1 * 1 * 3 * 1 * 7
= 84
下面是上述算法的实现。
C ++
// C++ program to find LCM of array without
// using GCD.
#include<bits/stdc++.h>
using namespace std;
// Returns LCM of arr[0..n-1]
unsigned long long int LCM( int arr[], int n)
{
// Find the maximum value in arr[]
int max_num = 0;
for ( int i=0; i<n; i++)
if (max_num < arr[i])
max_num = arr[i];
// Initialize result
unsigned long long int res = 1;
// Find all factors that are present in
// two or more array elements.
int x = 2; // Current factor.
while (x <= max_num)
{
// To store indexes of all array
// elements that are divisible by x.
vector< int > indexes;
for ( int j=0; j<n; j++)
if (arr[j]%x == 0)
indexes.push_back(j);
// If there are 2 or more array elements
// that are divisible by x.
if (indexes.size() >= 2)
{
// Reduce all array elements divisible
// by x.
for ( int j=0; j<indexes.size(); j++)
arr[indexes[j]] = arr[indexes[j]]/x;
res = res * x;
}
else
x++;
}
// Then multiply all reduced array elements
for ( int i=0; i<n; i++)
res = res*arr[i];
return res;
}
// Driver code
int main()
{
int arr[] = {1, 2, 3, 4, 5, 10, 20, 35};
int n = sizeof (arr)/ sizeof (arr[0]);
cout << LCM(arr, n) << "\n" ;
return 0;
}
Java
import java.util.Vector;
// Java program to find LCM of array without
// using GCD.
class GFG {
// Returns LCM of arr[0..n-1]
static long LCM( int arr[], int n) {
// Find the maximum value in arr[]
int max_num = 0 ;
for ( int i = 0 ; i < n; i++) {
if (max_num < arr[i]) {
max_num = arr[i];
}
}
// Initialize result
long res = 1 ;
// Find all factors that are present in
// two or more array elements.
int x = 2 ; // Current factor.
while (x <= max_num) {
// To store indexes of all array
// elements that are divisible by x.
Vector<Integer> indexes = new Vector<>();
for ( int j = 0 ; j < n; j++) {
if (arr[j] % x == 0 ) {
indexes.add(indexes.size(), j);
}
}
// If there are 2 or more array elements
// that are divisible by x.
if (indexes.size() >= 2 ) {
// Reduce all array elements divisible
// by x.
for ( int j = 0 ; j < indexes.size(); j++) {
arr[indexes.get(j)] = arr[indexes.get(j)] / x;
}
res = res * x;
} else {
x++;
}
}
// Then multiply all reduced array elements
for ( int i = 0 ; i < n; i++) {
res = res * arr[i];
}
return res;
}
// Driver code
public static void main(String[] args) {
int arr[] = { 1 , 2 , 3 , 4 , 5 , 10 , 20 , 35 };
int n = arr.length;
System.out.println(LCM(arr, n));
}
}
Python3
# Python3 program to find LCM of array
# without using GCD.
# Returns LCM of arr[0..n-1]
def LCM(arr, n):
# Find the maximum value in arr[]
max_num = 0 ;
for i in range (n):
if (max_num < arr[i]):
max_num = arr[i];
# Initialize result
res = 1 ;
# Find all factors that are present
# in two or more array elements.
x = 2 ; # Current factor.
while (x < = max_num):
# To store indexes of all array
# elements that are divisible by x.
indexes = [];
for j in range (n):
if (arr[j] % x = = 0 ):
indexes.append(j);
# If there are 2 or more array
# elements that are divisible by x.
if ( len (indexes) > = 2 ):
# Reduce all array elements
# divisible by x.
for j in range ( len (indexes)):
arr[indexes[j]] = int (arr[indexes[j]] / x);
res = res * x;
else :
x + = 1 ;
# Then multiply all reduced
# array elements
for i in range (n):
res = res * arr[i];
return res;
# Driver code
arr = [ 1 , 2 , 3 , 4 , 5 , 10 , 20 , 35 ];
n = len (arr);
print (LCM(arr, n));
# This code is contributed by chandan_jnu
C#
// C# program to find LCM of array
// without using GCD.
using System;
using System.Collections;
class GFG
{
// Returns LCM of arr[0..n-1]
static long LCM( int []arr, int n)
{
// Find the maximum value in arr[]
int max_num = 0;
for ( int i = 0; i < n; i++)
{
if (max_num < arr[i])
{
max_num = arr[i];
}
}
// Initialize result
long res = 1;
// Find all factors that are present
// in two or more array elements.
int x = 2; // Current factor.
while (x <= max_num)
{
// To store indexes of all array
// elements that are divisible by x.
ArrayList indexes = new ArrayList();
for ( int j = 0; j < n; j++)
{
if (arr[j] % x == 0)
{
indexes.Add(j);
}
}
// If there are 2 or more array elements
// that are divisible by x.
if (indexes.Count >= 2)
{
// Reduce all array elements divisible
// by x.
for ( int j = 0; j < indexes.Count; j++)
{
arr[( int )indexes[j]] = arr[( int )indexes[j]] / x;
}
res = res * x;
} else
{
x++;
}
}
// Then multiply all reduced
// array elements
for ( int i = 0; i < n; i++)
{
res = res * arr[i];
}
return res;
}
// Driver code
public static void Main()
{
int []arr = {1, 2, 3, 4, 5, 10, 20, 35};
int n = arr.Length;
Console.WriteLine(LCM(arr, n));
}
}
// This code is contributed by mits
的PHP
<?php
// PHP program to find LCM of array
// without using GCD.
// Returns LCM of arr[0..n-1]
function LCM( $arr , $n )
{
// Find the maximum value in arr[]
$max_num = 0;
for ( $i = 0; $i < $n ; $i ++)
if ( $max_num < $arr [ $i ])
$max_num = $arr [ $i ];
// Initialize result
$res = 1;
// Find all factors that are present
// in two or more array elements.
$x = 2; // Current factor.
while ( $x <= $max_num )
{
// To store indexes of all array
// elements that are divisible by x.
$indexes = array ();
for ( $j = 0; $j < $n ; $j ++)
if ( $arr [ $j ] % $x == 0)
array_push ( $indexes , $j );
// If there are 2 or more array
// elements that are divisible by x.
if ( count ( $indexes ) >= 2)
{
// Reduce all array elements
// divisible by x.
for ( $j = 0; $j < count ( $indexes ); $j ++)
$arr [ $indexes [ $j ]] = (int)( $arr [ $indexes [ $j ]] / $x );
$res = $res * $x ;
}
else
$x ++;
}
// Then multiply all reduced
// array elements
for ( $i = 0; $i < $n ; $i ++)
$res = $res * $arr [ $i ];
return $res ;
}
// Driver code
$arr = array (1, 2, 3, 4, 5, 10, 20, 35);
$n = count ( $arr );
echo LCM( $arr , $n ) . "\n" ;
// This code is contributed by chandan_jnu
?>
输出如下:
420
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。