本文概述
给定n个物料的权重和值, 将这些物料放在容量为W的背包中, 以在背包中获得最大的总价值。换句话说, 给定两个整数数组val [0..n-1]和wt [0..n-1], 它们分别表示与n个项目关联的值和权重。还要给定代表背包容量的整数W, 找出val []的最大值子集, 以使该子集的权重之和小于或等于W。你不能破坏任何项目, 请选择完整的项目或不要不要选择它(0-1个属性)。
方法1:通过暴力算法递归或穷举搜索。
方法:一个简单的解决方案是考虑项目的所有子集,并计算所有子集的总权重和值。只考虑总权值小于w的子集,从所有这些子集中选取最大值子集。
最优子结构:考虑所有项目的子集,每个项目可以有两种情况。
- 情况1:该项目包括在最佳子集中。
- 情况2:该项目不包括在最佳组合中。
因此, 可以从" n"项获得的最大值是以下两个值中的最大值。
- 通过n-1个项和W权重(不包括第n个项)获得的最大值。
- 第n个项目的值加上n-1个项目获得的最大值, W减去第n个项目(包括第n个项目)的权重。
如果"第n个"项目的权重大于" W", 则第n个项目不能包含在内, 并且情况1是唯一的可能性。
下面是上述方法的实现:
C ++
/* A Naive recursive implementation of
0-1 Knapsack problem */
#include <bits/stdc++.h>
using namespace std;
// A utility function that returns
// maximum of two integers
int max( int a, int b) { return (a > b) ? a : b; }
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack( int W, int wt[], int val[], int n)
{
// Base Case
if (n == 0 || W == 0)
return 0;
// If weight of the nth item is more
// than Knapsack capacity W, then
// this item cannot be included
// in the optimal solution
if (wt[n - 1] > W)
return knapSack(W, wt, val, n - 1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max(
val[n - 1]
+ knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
}
// Driver code
int main()
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int n = sizeof (val) / sizeof (val[0]);
cout << knapSack(W, wt, val, n);
return 0;
}
// This code is contributed by rathbhupendra
C
/* A Naive recursive implementation
of 0-1 Knapsack problem */
#include <stdio.h>
// A utility function that returns
// maximum of two integers
int max( int a, int b) { return (a > b) ? a : b; }
// Returns the maximum value that can be
// put in a knapsack of capacity W
int knapSack( int W, int wt[], int val[], int n)
{
// Base Case
if (n == 0 || W == 0)
return 0;
// If weight of the nth item is more than
// Knapsack capacity W, then this item cannot
// be included in the optimal solution
if (wt[n - 1] > W)
return knapSack(W, wt, val, n - 1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max(
val[n - 1]
+ knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
}
// Driver program to test above function
int main()
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int n = sizeof (val) / sizeof (val[0]);
printf ( "%d" , knapSack(W, wt, val, n));
return 0;
}
Java
/* A Naive recursive implementation
of 0-1 Knapsack problem */
class Knapsack {
// A utility function that returns
// maximum of two integers
static int max( int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of
// capacity W
static int knapSack( int W, int wt[], int val[], int n)
{
// Base Case
if (n == 0 || W == 0 )
return 0 ;
// If weight of the nth item is
// more than Knapsack capacity W, // then this item cannot be included
// in the optimal solution
if (wt[n - 1 ] > W)
return knapSack(W, wt, val, n - 1 );
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max(val[n - 1 ]
+ knapSack(W - wt[n - 1 ], wt, val, n - 1 ), knapSack(W, wt, val, n - 1 ));
}
// Driver code
public static void main(String args[])
{
int val[] = new int [] { 60 , 100 , 120 };
int wt[] = new int [] { 10 , 20 , 30 };
int W = 50 ;
int n = val.length;
System.out.println(knapSack(W, wt, val, n));
}
}
/*This code is contributed by Rajat Mishra */
python
# A naive recursive implementation
# of 0-1 Knapsack Problem
# Returns the maximum value that
# can be put in a knapsack of
# capacity W
def knapSack(W, wt, val, n):
# Base Case
if n = = 0 or W = = 0 :
return 0
# If weight of the nth item is
# more than Knapsack of capacity W, # then this item cannot be included
# in the optimal solution
if (wt[n - 1 ] > W):
return knapSack(W, wt, val, n - 1 )
# return the maximum of two cases:
# (1) nth item included
# (2) not included
else :
return max (
val[n - 1 ] + knapSack(
W - wt[n - 1 ], wt, val, n - 1 ), knapSack(W, wt, val, n - 1 ))
# end of function knapSack
#Driver Code
val = [ 60 , 100 , 120 ]
wt = [ 10 , 20 , 30 ]
W = 50
n = len (val)
print knapSack(W, wt, val, n)
# This code is contributed by Nikhil Kumar Singh
C#
/* A Naive recursive implementation of
0-1 Knapsack problem */
using System;
class GFG {
// A utility function that returns
// maximum of two integers
static int max( int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that can
// be put in a knapsack of capacity W
static int knapSack( int W, int [] wt, int [] val, int n)
{
// Base Case
if (n == 0 || W == 0)
return 0;
// If weight of the nth item is
// more than Knapsack capacity W, // then this item cannot be
// included in the optimal solution
if (wt[n - 1] > W)
return knapSack(W, wt, val, n - 1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max(val[n - 1]
+ knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
}
// Driver code
public static void Main()
{
int [] val = new int [] { 60, 100, 120 };
int [] wt = new int [] { 10, 20, 30 };
int W = 50;
int n = val.Length;
Console.WriteLine(knapSack(W, wt, val, n));
}
}
// This code is contributed by Sam007
的PHP
<?php
// A Naive recursive implementation
// of 0-1 Knapsack problem
// Returns the maximum value that
// can be put in a knapsack of
// capacity W
function knapSack( $W , $wt , $val , $n )
{
// Base Case
if ( $n == 0 || $W == 0)
return 0;
// If weight of the nth item is
// more than Knapsack capacity
// W, then this item cannot be
// included in the optimal solution
if ( $wt [ $n - 1] > $W )
return knapSack( $W , $wt , $val , $n - 1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else
return max( $val [ $n - 1] +
knapSack( $W - $wt [ $n - 1], $wt , $val , $n - 1), knapSack( $W , $wt , $val , $n -1));
}
// Driver Code
$val = array (60, 100, 120);
$wt = array (10, 20, 30);
$W = 50;
$n = count ( $val );
echo knapSack( $W , $wt , $val , $n );
// This code is contributed by Sam007
?>
输出如下
220
应当注意, 上述函数一次又一次地计算相同的子问题。参见下面的递归树, K(1, 1)被评估两次。此幼稚递归解决方案的时间复杂度是指数(2 ^ n)。
In the following recursion tree, K() refers
to knapSack(). The two parameters indicated in the
following recursion tree are n and W.
The recursion tree is for following sample inputs.
wt[] = {1, 1, 1}, W = 2, val[] = {10, 20, 30}
K(n, W)
K(3, 2)
/ \
/ \
K(2, 2) K(2, 1)
/ \ / \
/ \ / \
K(1, 2) K(1, 1) K(1, 1) K(1, 0)
/ \ / \ / \
/ \ / \ / \
K(0, 2) K(0, 1) K(0, 1) K(0, 0) K(0, 1) K(0, 0)
Recursion tree for Knapsack capacity 2
units and 3 items of 1 unit weight.
复杂度分析:
- 时间复杂度:O(2^n)。
由于存在多余的子问题。 - 辅助空间:O(1)。
由于没有额外的数据结构用于存储值。
由于子问题再次计算,这个问题具有重叠子问题属性。所以0-1背包问题具有动态规划问题的两个性质(看这个和这个)。
方法2:与其他典型的动态规划(DP)问题一样,通过自底向上构造临时数组K[][],可以避免重复计算相同的子问题。下面是基于动态编程的实现。
方法:在动态编程中, 我们将考虑与递归方法中提到的相同情况。在DP [] []表中, 将所有可能的权重(从" 1"到" W")视为列, 并将权重保留为行。
考虑到从" 1"到" i"的所有值, 状态DP [i] [j]将表示" j-weight"的最大值。因此, 如果我们考虑使用" wi"(" ith"行中的权重), 则可以将其填写在所有具有" weight values> wi"的列中。现在可以发生两种可能性:
- 在给定的列中填写" wi"。
- 不要在给定的栏中填写" wi"。
现在, 我们必须最大程度地考虑这两种可能性, 形式上, 如果我们不在" jth"列中填充" ith"权重, 则DP [i] [j]状态将与DP [i-1] [j]相同, 但是如果我们填充权重, 则DP [i] [j]将等于" wi"的值+上一行中权重为" j-wi"的列的值。因此, 我们将这两种可能性中的最大值用于填充当前状态。这种可视化将使概念更清晰:
Let weight elements = {1, 2, 3}
Let weight values = {10, 15, 40}
Capacity=6
0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 10 10 10 10 10 10
2 0 10 15 25 25 25 25
3 0
Explanation:
For filling 'weight = 2' we come
across 'j = 3' in which
we take maximum of
(10, 15 + DP[1][3-2]) = 25
| |
'2' '2 filled'
not filled
0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 10 10 10 10 10 10
2 0 10 15 25 25 25 25
3 0 10 15 40 50 55 65
Explanation:
For filling 'weight=3', we come across 'j=4' in which
we take maximum of (25, 40 + DP[2][4-3])
= 50
For filling 'weight=3'
we come across 'j=5' in which
we take maximum of (25, 40 + DP[2][5-3])
= 55
For filling 'weight=3'
we come across 'j=6' in which
we take maximum of (25, 40 + DP[2][6-3])
= 65
C
// A Dynamic Programming based
// solution for 0-1 Knapsack problem
#include <stdio.h>
// A utility function that returns
// maximum of two integers
int max( int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack( int W, int wt[], int val[], int n)
{
int i, w;
int K[n + 1][W + 1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(val[i - 1]
+ K[i - 1][w - wt[i - 1]], K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
// Driver Code
int main()
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int n = sizeof (val) / sizeof (val[0]);
printf ( "%d" , knapSack(W, wt, val, n));
return 0;
}
Java
// A Dynamic Programming based solution
// for 0-1 Knapsack problem
class Knapsack {
// A utility function that returns
// maximum of two integers
static int max( int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that can
// be put in a knapsack of capacity W
static int knapSack( int W, int wt[], int val[], int n)
{
int i, w;
int K[][] = new int [n + 1 ][W + 1 ];
// Build table K[][] in bottom up manner
for (i = 0 ; i <= n; i++)
{
for (w = 0 ; w <= W; w++)
{
if (i == 0 || w == 0 )
K[i][w] = 0 ;
else if (wt[i - 1 ] <= w)
K[i][w]
= max(val[i - 1 ]
+ K[i - 1 ][w - wt[i - 1 ]], K[i - 1 ][w]);
else
K[i][w] = K[i - 1 ][w];
}
}
return K[n][W];
}
// Driver code
public static void main(String args[])
{
int val[] = new int [] { 60 , 100 , 120 };
int wt[] = new int [] { 10 , 20 , 30 };
int W = 50 ;
int n = val.length;
System.out.println(knapSack(W, wt, val, n));
}
}
/*This code is contributed by Rajat Mishra */
python
# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
def knapSack(W, wt, val, n):
K = [[ 0 for x in range (W + 1 )] for x in range (n + 1 )]
# Build table K[][] in bottom up manner
for i in range (n + 1 ):
for w in range (W + 1 ):
if i = = 0 or w = = 0 :
K[i][w] = 0
elif wt[i - 1 ] < = w:
K[i][w] = max (val[i - 1 ]
+ K[i - 1 ][w - wt[i - 1 ]], K[i - 1 ][w])
else :
K[i][w] = K[i - 1 ][w]
return K[n][W]
# Driver code
val = [ 60 , 100 , 120 ]
wt = [ 10 , 20 , 30 ]
W = 50
n = len (val)
print (knapSack(W, wt, val, n))
# This code is contributed by Bhavya Jain
C#
// A Dynamic Programming based solution for
// 0-1 Knapsack problem
using System;
class GFG {
// A utility function that returns
// maximum of two integers
static int max( int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of
// capacity W
static int knapSack( int W, int [] wt, int [] val, int n)
{
int i, w;
int [, ] K = new int [n + 1, W + 1];
// Build table K[][] in bottom
// up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i, w] = 0;
else if (wt[i - 1] <= w)
K[i, w] = Math.Max(
val[i - 1]
+ K[i - 1, w - wt[i - 1]], K[i - 1, w]);
else
K[i, w] = K[i - 1, w];
}
}
return K[n, W];
}
// Driver code
static void Main()
{
int [] val = new int [] { 60, 100, 120 };
int [] wt = new int [] { 10, 20, 30 };
int W = 50;
int n = val.Length;
Console.WriteLine(knapSack(W, wt, val, n));
}
}
// This code is contributed by Sam007
的PHP
<?php
// A Dynamic Programming based solution
// for 0-1 Knapsack problem
// Returns the maximum value that
// can be put in a knapsack of
// capacity W
function knapSack( $W , $wt , $val , $n )
{
$K = array ( array ());
// Build table K[][] in
// bottom up manner
for ( $i = 0; $i <= $n ; $i ++)
{
for ( $w = 0; $w <= $W ; $w ++)
{
if ( $i == 0 || $w == 0)
$K [ $i ][ $w ] = 0;
else if ( $wt [ $i - 1] <= $w )
$K [ $i ][ $w ] = max( $val [ $i - 1] +
$K [ $i - 1][ $w -
$wt [ $i - 1]], $K [ $i - 1][ $w ]);
else
$K [ $i ][ $w ] = $K [ $i - 1][ $w ];
}
}
return $K [ $n ][ $W ];
}
// Driver Code
$val = array (60, 100, 120);
$wt = array (10, 20, 30);
$W = 50;
$n = count ( $val );
echo knapSack( $W , $wt , $val , $n );
// This code is contributed by Sam007.
?>
输出如下
220
复杂度分析:
- 时间复杂度:O(N * W)。
其中" N"是重量元素的数量, " W"是容量。对于每个重量元素, 我们遍历所有重量容量1 <= w <= W。 - 辅助空间:O(N * W)。
使用大小为" N * W"的二维数组。
方法3:此方法使用内存技术(递归方法的扩展)。
此方法基本上是递归方法的扩展, 因此我们可以克服计算冗余案例的问题, 从而增加了复杂性。我们可以通过简单地创建一个二维数组来解决这个问题, 如果我们第一次得到它, 它可以存储一个特定的状态(n, w)。现在, 如果我们再次遇到相同的状态(n, w), 而不是以指数复杂度进行计算, 我们可以直接以固定时间返回存储在表中的结果。在此方面, 此方法相对于递归方法具有优势。
C ++
// Here is the top-down approach of
// dynamic programming
#include <bits/stdc++.h>
using namespace std;
// Returns the value of maximum profit
int knapSackRec( int W, int wt[], int val[], int i, int ** dp)
{
// base condition
if (i < 0)
return 0;
if (dp[i][W] != -1)
return dp[i][W];
if (wt[i] > W) {
// Store the value of function call
// stack in table before return
dp[i][W] = knapSackRec(W, wt, val, i - 1, dp);
return dp[i][W];
}
else {
// Store value in a table before return
dp[i][W] = max(val[i]
+ knapSackRec(W - wt[i], wt, val, i - 1, dp), knapSackRec(W, wt, val, i - 1, dp));
// Return value of table after storing
return dp[i][W];
}
}
int knapSack( int W, int wt[], int val[], int n)
{
// double pointer to declare the
// table dynamically
int ** dp;
dp = new int *[n];
// loop to create the table dynamically
for ( int i = 0; i < n; i++)
dp[i] = new int [W + 1];
// loop to initially filled the
// table with -1
for ( int i = 0; i < n; i++)
for ( int j = 0; j < W + 1; j++)
dp[i][j] = -1;
return knapSackRec(W, wt, val, n - 1, dp);
}
// Driver Code
int main()
{
int val[] = { 10, 20, 30 };
int wt[] = { 1, 1, 1 };
int W = 2;
int n = sizeof (val) / sizeof (val[0]);
cout << knapSack(W, wt, val, n);
return 0;
}
Python3
# This is the memoization approach of
# 0 / 1 Knapsack in Python in simple
# we can say recursion + memoization = DP
# driver code
val = [ 60 , 100 , 120 ]
wt = [ 10 , 20 , 30 ]
W = 50
n = len (val)
# We initialize the matrix with -1 at first.
t = [[ - 1 for i in range (W + 1 )] for j in range (n + 1 )]
def knapsack(wt, val, W, n):
# base conditions
if n = = 0 or W = = 0 :
return 0
if t[n][W] ! = - 1 :
return t[n][W]
# choice diagram code
if wt[n - 1 ] < = W:
t[n][W] = max (
val[n - 1 ] + knapsack(
wt, val, W - wt[n - 1 ], n - 1 ), knapsack(wt, val, W, n - 1 ))
return t[n][W]
elif wt[n - 1 ] > W:
t[n][W] = knapsack(wt, val, W, n - 1 )
return t[n][W]
print (knapsack(wt, val, W, n))
# This code is contributed by Prosun Kumar Sarkar
输出如下
50
复杂度分析:
- 时间复杂度:O(N * W)。
由于避免了状态的冗余计算。 - 辅助空间:O(N * W)。
使用2D数组数据结构存储中间状态-:
[注意:对于32位整数, 请使用long而不是int。]
参考文献:
- http://www.es.ele.tue.nl/education/5MC10/Solutions/knapsack.pdf
- http://www.cse.unl.edu/~goddard/Courses/CSCE310J/Lectures/Lecture8-Dynamilsbin.pdf
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。