本文概述
给定一个数组, 反转由连续的k个元素形成的每个子数组。
例子:
输入:arr = [1、2、3、4、5、6、7、8、9] k = 3输出:[3、2、1、6、5、4、9、8、7]输入:arr = [1、2、3、4、5、6、7、8] k = 5输出:[5、4、3、2、1、8、7、6]输入:arr = [1、2、3 , 4, 5, 6] k = 1输出:[1, 2, 3, 4, 5, 6]输入:arr = [1, 2, 3, 4, 5, 6, 7, 8] k = 10输出:[8、7、6、5、4、3、2、1]
推荐:请在"实践首先, 在继续解决方案之前。
方法:考虑大小的每个子数组ķ从数组的开头开始并将其反转。我们需要处理一些特殊情况。如果k不是n的倍数, 其中n是数组的大小, 那么对于最后一组, 我们剩下的元素少于k个, 我们需要反转所有剩余的元素。如果k = 1, 数组应保持不变。如果k> = n, 则反转数组中存在的所有元素。
下图是上述方法的模拟:
下面是上述方法的实现:
C ++
// C++ program to reverse every sub-array formed by
// consecutive k elements
#include <iostream>
using namespace std;
// Function to reverse every sub-array formed by
// consecutive k elements
void reverse( int arr[], int n, int k)
{
for ( int i = 0; i < n; i += k)
{
int left = i;
// to handle case when k is not multiple of n
int right = min(i + k - 1, n - 1);
// reverse the sub-array [left, right]
while (left < right)
swap(arr[left++], arr[right--]);
}
}
// Driver code
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8};
int k = 3;
int n = sizeof (arr) / sizeof (arr[0]);
reverse(arr, n, k);
for ( int i = 0; i < n; i++)
cout << arr[i] << " " ;
return 0;
}
Java
// Java program to reverse every sub-array formed by
// consecutive k elements
class GFG {
// Function to reverse every sub-array formed by
// consecutive k elements
static void reverse( int arr[], int n, int k)
{
for ( int i = 0 ; i < n; i += k)
{
int left = i;
// to handle case when k is not multiple
// of n
int right = Math.min(i + k - 1 , n - 1 );
int temp;
// reverse the sub-array [left, right]
while (left < right)
{
temp=arr[left];
arr[left]=arr[right];
arr[right]=temp;
left+= 1 ;
right-= 1 ;
}
}
}
// Driver method
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 };
int k = 3 ;
int n = arr.length;
reverse(arr, n, k);
for ( int i = 0 ; i < n; i++)
System.out.print(arr[i] + " " );
}
}
// This code is contributed by Anant Agarwal.
Python3
# Python 3 program to reverse every
# sub-array formed by consecutive k
# elements
# Function to reverse every sub-array
# formed by consecutive k elements
def reverse(arr, n, k):
i = 0
while (i<n):
left = i
# To handle case when k is not
# multiple of n
right = min (i + k - 1 , n - 1 )
# Reverse the sub-array [left, right]
while (left < right):
arr[left], arr[right] = arr[right], arr[left]
left + = 1 ;
right - = 1
i + = k
# Driver code
arr = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]
k = 3
n = len (arr)
reverse(arr, n, k)
for i in range ( 0 , n):
print (arr[i], end = " " )
# This code is contributed by Smitha Dinesh Semwal
C#
// C# program to reverse every sub-array
// formed by consecutive k elements
using System;
class GFG
{
// Function to reverse every sub-array
// formed by consecutive k elements
public static void reverse( int [] arr, int n, int k)
{
for ( int i = 0; i < n; i += k)
{
int left = i;
// to handle case when k is
// not multiple of n
int right = Math.Min(i + k - 1, n - 1);
int temp;
// reverse the sub-array [left, right]
while (left < right)
{
temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
left += 1;
right -= 1;
}
}
}
// Driver Code
public static void Main( string [] args)
{
int [] arr = new int [] {1, 2, 3, 4, 5, 6, 7, 8};
int k = 3;
int n = arr.Length;
reverse(arr, n, k);
for ( int i = 0; i < n; i++)
{
Console.Write(arr[i] + " " );
}
}
}
// This code is contributed
// by Shrikant13
的PHP
<?php
// PHP program to reverse every sub-array
// formed by consecutive k elements
// Function to reverse every sub-array
// formed by consecutive k elements
function reverse( $arr , $n , $k )
{
for ( $i = 0; $i < $n ; $i += $k )
{
$left = $i ;
// to handle case when k is not
// multiple of n
$right = min( $i + $k - 1, $n - 1);
$temp ;
// reverse the sub-array [left, right]
while ( $left < $right )
{
$temp = $arr [ $left ];
$arr [ $left ] = $arr [ $right ];
$arr [ $right ] = $temp ;
$left += 1;
$right -= 1;
}
}
return $arr ;
}
// Driver Code
$arr = array (1, 2, 3, 4, 5, 6, 7, 8);
$k = 3;
$n = sizeof( $arr );
$arr1 = reverse( $arr , $n , $k );
for ( $i = 0; $i < $n ; $i ++)
echo $arr1 [ $i ] . " " ;
// This code is contributed
// by Akanksha Rai
?>
输出如下:
3 2 1 6 5 4 8 7
时间复杂度
上述解决方案的值为O(n)。
辅助空间
该程序使用的是O(1)。
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。