本文概述
先决条件:页面替换算法
在使用分页进行内存管理的操作系统中, 需要使用页面替换算法来确定新页面进入时需要替换哪个页面。每当引用新页面且内存中不存在该新页面时, 就会发生页面错误, 并且操作系统会替换其中之一。现有页面以及新需要的页面。不同的页面替换算法建议了不同的方法来决定替换哪个页面。所有算法的目标是减少页面错误的数量。
In大号东[R兴致勃勃地üsed(LRU)算法是Greedy算法, 其中要替换的页面最近最少使用。这个想法基于参考的本地性, 不太可能使用最近最少的页面
假设页面引用字符串7 0 1 2 0 3 0 4 2 3 0 3 2。最初, 我们有4个页面空白。
最初, 所有插槽都是空的, 因此当7 0 1 2分配给空插槽时->
4页错误
0已经是他们了->
0页错误。
当3出现时, 它将取代7, 因为它是最近最少使用的->
1页故障
0已在内存中, 所以->
0页故障
.
4将代替1->
1页故障
现在获取其他页面参考字符串—>
0页故障
因为它们已经在内存中可用。
给定内存容量(它可以容纳的页面数)和代表要引用的页面的字符串, 编写一个函数来查找页面错误数。
推荐:请在"实践首先, 在继续解决方案之前。
Let capacity be the number of pages that
memory can hold. Let set be the current
set of pages in memory.
1- Start traversing the pages.
i) If set holds less pages than capacity.
a) Insert page into the set one by one until
the size of set reaches capacity or all
page requests are processed.
b) Simultaneously maintain the recent occurred
index of each page in a map called indexes.
c) Increment page fault
ii) Else
If current page is present in set, do nothing.
Else
a) Find the page in the set that was least
recently used. We find it using index array.
We basically need to replace the page with
minimum index.
b) Replace the found page with current page.
c) Increment page faults.
d) Update index of current page.
2. Return page faults.
以下是上述步骤的实现。
C ++
//C++ implementation of above algorithm
#include<bits/stdc++.h>
using namespace std;
// Function to find page faults using indexes
int pageFaults( int pages[], int n, int capacity)
{
// To represent set of current pages. We use
// an unordered_set so that we quickly check
// if a page is present in set or not
unordered_set< int > s;
// To store least recently used indexes
// of pages.
unordered_map< int , int > indexes;
// Start from initial page
int page_faults = 0;
for ( int i=0; i<n; i++)
{
// Check if the set can hold more pages
if (s.size() < capacity)
{
// Insert it into set if not present
// already which represents page fault
if (s.find(pages[i])==s.end())
{
s.insert(pages[i]);
// increment page fault
page_faults++;
}
// Store the recently used index of
// each page
indexes[pages[i]] = i;
}
// If the set is full then need to perform lru
// i.e. remove the least recently used page
// and insert the current page
else
{
// Check if current page is not already
// present in the set
if (s.find(pages[i]) == s.end())
{
// Find the least recently used pages
// that is present in the set
int lru = INT_MAX, val;
for ( auto it=s.begin(); it!=s.end(); it++)
{
if (indexes[*it] < lru)
{
lru = indexes[*it];
val = *it;
}
}
// Remove the indexes page
s.erase(val);
// insert the current page
s.insert(pages[i]);
// Increment page faults
page_faults++;
}
// Update the current page index
indexes[pages[i]] = i;
}
}
return page_faults;
}
// Driver code
int main()
{
int pages[] = {7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2};
int n = sizeof (pages)/ sizeof (pages[0]);
int capacity = 4;
cout << pageFaults(pages, n, capacity);
return 0;
}
Java
// Java implementation of above algorithm
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
class Test
{
// Method to find page faults using indexes
static int pageFaults( int pages[], int n, int capacity)
{
// To represent set of current pages. We use
// an unordered_set so that we quickly check
// if a page is present in set or not
HashSet<Integer> s = new HashSet<>(capacity);
// To store least recently used indexes
// of pages.
HashMap<Integer, Integer> indexes = new HashMap<>();
// Start from initial page
int page_faults = 0 ;
for ( int i= 0 ; i<n; i++)
{
// Check if the set can hold more pages
if (s.size() < capacity)
{
// Insert it into set if not present
// already which represents page fault
if (!s.contains(pages[i]))
{
s.add(pages[i]);
// increment page fault
page_faults++;
}
// Store the recently used index of
// each page
indexes.put(pages[i], i);
}
// If the set is full then need to perform lru
// i.e. remove the least recently used page
// and insert the current page
else
{
// Check if current page is not already
// present in the set
if (!s.contains(pages[i]))
{
// Find the least recently used pages
// that is present in the set
int lru = Integer.MAX_VALUE, val=Integer.MIN_VALUE;
Iterator<Integer> itr = s.iterator();
while (itr.hasNext()) {
int temp = itr.next();
if (indexes.get(temp) < lru)
{
lru = indexes.get(temp);
val = temp;
}
}
// Remove the indexes page
s.remove(val);
//remove lru from hashmap
indexes.remove(val);
// insert the current page
s.add(pages[i]);
// Increment page faults
page_faults++;
}
// Update the current page index
indexes.put(pages[i], i);
}
}
return page_faults;
}
// Driver method
public static void main(String args[])
{
int pages[] = { 7 , 0 , 1 , 2 , 0 , 3 , 0 , 4 , 2 , 3 , 0 , 3 , 2 };
int capacity = 4 ;
System.out.println(pageFaults(pages, pages.length, capacity));
}
}
// This code is contributed by Gaurav Miglani
C#
// C# implementation of above algorithm
using System;
using System.Collections.Generic;
class GFG
{
// Method to find page faults
// using indexes
static int pageFaults( int []pages, int n, int capacity)
{
// To represent set of current pages.
// We use an unordered_set so that
// we quickly check if a page is
// present in set or not
HashSet< int > s = new HashSet< int >(capacity);
// To store least recently used indexes
// of pages.
Dictionary< int , int > indexes = new Dictionary< int , int >();
// Start from initial page
int page_faults = 0;
for ( int i = 0; i < n; i++)
{
// Check if the set can hold more pages
if (s.Count < capacity)
{
// Insert it into set if not present
// already which represents page fault
if (!s.Contains(pages[i]))
{
s.Add(pages[i]);
// increment page fault
page_faults++;
}
// Store the recently used index of
// each page
if (indexes.ContainsKey(pages[i]))
indexes[pages[i]] = i;
else
indexes.Add(pages[i], i);
}
// If the set is full then need to
// perform lru i.e. remove the least
// recently used page and insert
// the current page
else
{
// Check if current page is not
// already present in the set
if (!s.Contains(pages[i]))
{
// Find the least recently used pages
// that is present in the set
int lru = int .MaxValue, val = int .MinValue;
foreach ( int itr in s)
{
int temp = itr;
if (indexes[temp] < lru)
{
lru = indexes[temp];
val = temp;
}
}
// Remove the indexes page
s.Remove(val);
//remove lru from hashmap
indexes.Remove(val);
// insert the current page
s.Add(pages[i]);
// Increment page faults
page_faults++;
}
// Update the current page index
if (indexes.ContainsKey(pages[i]))
indexes[pages[i]] = i;
else
indexes.Add(pages[i], i);
}
}
return page_faults;
}
// Driver Code
public static void Main(String []args)
{
int []pages = {7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2};
int capacity = 4;
Console.WriteLine(pageFaults(pages, pages.Length, capacity));
}
}
// This code is contributed by 29AjayKumar
输出如下:
6
另一种方法:
(不使用HashMap)
Java
// Java program for page replacement algorithms
import java.util.ArrayList;
public class LRU {
// Driver method
public static void main(String[] args) {
int capacity = 4 ;
int arr[] = { 7 , 0 , 1 , 2 , 0 , 3 , 0 , 4 , 2 , 3 , 0 , 3 , 2 };
// To represent set of current pages.We use
// an Arraylist
ArrayList<Integer> s= new ArrayList<>(capacity);
int count= 0 ;
int page_faults= 0 ;
for ( int i:arr)
{
// Insert it into set if not present
// already which represents page fault
if (!s.contains(i))
{
// Check if the set can hold equal pages
if (s.size()==capacity)
{
s.remove( 0 );
s.add(capacity- 1 , i);
}
else
s.add(count, i);
// Increment page faults
page_faults++;
++count;
}
else
{
// Remove the indexes page
s.remove((Object)i);
// insert the current page
s.add(s.size(), i);
}
}
System.out.println(page_faults);
}
}
Python3
# Python3 program for page replacement algorithm
# Driver code
capacity = 4
processList = [ 7 , 0 , 1 , 2 , 0 , 3 , 0 , 4 , 2 , 3 , 0 , 3 , 2 ]
# List of current pages in Main Memory
s = []
pageFaults = 0
# pageHits = 0
for i in processList:
# If i is not present in currentPages list
if i not in s:
# Check if the list can hold equal pages
if ( len (s) = = capacity):
s.remove(s[ 0 ])
s.append(i)
else :
s.append(i)
# Increment Page faults
pageFaults + = 1
# If page is already there in
# currentPages i.e in Main
else :
# Remove previous index of current page
s.remove(i)
# Now append it, at last index
s.append(i)
print ( "{}" . format (pageFaults))
# This code is contributed by mahi_07
C#
// C# program for page replacement algorithms
using System;
using System.Collections.Generic;
class LRU
{
// Driver method
public static void Main(String[] args)
{
int capacity = 4;
int []arr = {7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2};
// To represent set of current pages.
// We use an Arraylist
List< int > s = new List< int >(capacity);
int count = 0;
int page_faults = 0;
foreach ( int i in arr)
{
// Insert it into set if not present
// already which represents page fault
if (!s.Contains(i))
{
// Check if the set can hold equal pages
if (s.Count == capacity)
{
s.RemoveAt(0);
s.Insert(capacity - 1, i);
}
else
s.Insert(count, i);
// Increment page faults
page_faults++;
++count;
}
else
{
// Remove the indexes page
s.Remove(i);
// insert the current page
s.Insert(s.Count, i);
}
}
Console.WriteLine(page_faults);
}
}
// This code is contributed by Rajput-Ji
输出如下:
6
注意:我们还可以找到页面点击数。只需维护一个单独的计数。
如果当前页面已在内存中, 则必须将其计为Page-hit。
我们将在其他集中讨论其他页面替换算法。
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。