算法:如何实现打印字符串的所有子序列?|迭代法

2021年3月19日18:22:25 发表评论 797 次浏览

本文概述

给定一个字符串s,以迭代的方式打印给定字符串的所有可能的子序列。我们已经讨论了打印字符串的所有子序列的递归方法。

例子:

Input : abc
Output : a, b, c, ab, ac, bc, abc

Input : aab
Output : a, b, aa, ab, aab

推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。

方法1:

这里,我们讨论了更简单的迭代方法,它类似于幂集。我们使用二进制表示1到2^length(s) - 1的比特模式。

input =" abc"

考虑1到(2 ^ 3-1)的二进制表示形式, 即1到7。

从二进制表示形式的左(MSB)到右侧(LSB)开始, 并将与二进制表示形式的位值1相对应的输入字符串中的字符追加到Final子序列字符串sub中。

例子:

001 => abc。只有c对应于比特1。因此, 子序列= c。

101 => abc。 a和c对应于比特1。因此, 子序列= ac。

binary_representation(1)= 001 => c

binary_representation(2)= 010 => b

binary_representation(3)= 011 => bc

binary_representation(4)= 100 =>一个

binary_representation(5)= 101 =>交流

二进制表示(6)= 110 => ab

binary_representation(7)= 111 => abc

下面是上述方法的实现:

C ++

// CPP program to print all Subsequences
// of a string in iterative manner
#include <bits/stdc++.h>
using namespace std;
  
// function to find subsequence
string subsequence(string s, int binary, int len)
{
     string sub = "" ;
     for ( int j = 0; j < len; j++)
  
         // check if jth bit in binary is 1
         if (binary & (1 << j))
  
             // if jth bit is 1, include it
             // in subsequence
             sub += s[j];
  
     return sub;
}
  
// function to print all subsequences
void possibleSubsequences(string s){
  
     // map to store subsequence 
     // lexicographically by length
     map< int , set<string> > sorted_subsequence;
  
     int len = s.size();
      
     // Total number of non-empty subsequence
     // in string is 2^len-1
     int limit = pow (2, len);
      
     // i=0, corresponds to empty subsequence
     for ( int i = 1; i <= limit - 1; i++) { 
          
         // subsequence for binary pattern i
         string sub = subsequence(s, i, len);
          
         // storing sub in map
         sorted_subsequence[sub.length()].insert(sub);
     }
  
     for ( auto it : sorted_subsequence) { 
          
         // it.first is length of Subsequence
         // it.second is set<string>
         cout << "Subsequences of length = " 
              << it.first << " are:" << endl;
               
         for ( auto ii : it.second)
              
             // ii is iterator of type set<string>
             cout << ii << " " ;
          
         cout << endl;
     }
}
  
// driver function
int main()
{
     string s = "aabc" ;
     possibleSubsequences(s);
     return 0;
}

Python3

# Python3 program to print all Subsequences
# of a string in iterative manner
  
# function to find subsequence
def subsequence(s, binary, length):
     sub = ""
     for j in range (length):
          
         # check if jth bit in binary is 1
         if (binary & ( 1 << j)):
  
             # if jth bit is 1, include it
             # in subsequence
             sub + = s[j]
     return sub
  
# function to print all subsequences
def possibleSubsequences(s):
  
     # map to store subsequence 
     # lexicographically by length
     sorted_subsequence = {}
  
     length = len (s)
      
     # Total number of non-empty subsequence
     # in string is 2^len-1
     limit = 2 * * length
      
     # i=0, corresponds to empty subsequence
     for i in range ( 1 , limit):
          
         # subsequence for binary pattern i
         sub = subsequence(s, i, length)
          
         # storing sub in map
         if len (sub) in sorted_subsequence.keys():
             sorted_subsequence[ len (sub)] = \
              tuple ( list (sorted_subsequence[ len (sub)]) + [sub])
         else :
             sorted_subsequence[ len (sub)] = [sub]
  
     for it in sorted_subsequence:
          
         # it.first is length of Subsequence
         # it.second is set<string>
         print ( "Subsequences of length =" , it, "are:" )
         for ii in sorted ( set (sorted_subsequence[it])):
              
             # ii is iterator of type set<string>
             print (ii, end = ' ' )
         print ()
  
# Driver Code
s = "aabc"
possibleSubsequences(s)
  
# This code is contributed by ankush_953

输出如下:

Subsequences of length = 1 are:
a b c 
Subsequences of length = 2 are:
aa ab ac bc 
Subsequences of length = 3 are:
aab aac abc 
Subsequences of length = 4 are:
aabc

时间复杂度:

O(2 ^ {n} * l)

, 其中n是查找子序列的字符串的长度, l是二进制字符串的长度。

方法2:

方法是获取最右边的设置位的位置, 并在将给定字符串中的相应字符附加到子序列后重置该位, 并将重复相同的操作, 直到相应的二进制模式没有设置位为止。

如果输入为s =" abc"

考虑1到(2 ^ 3-1)的二进制表示形式, 即1到7。

001 => abc。只有c对应于比特1。因此, 子序列= c

101 => abc。 a和c对应于比特1。因此, 子序列= ac。

让我们使用5的二进制表示形式, 即101。

最右边的位在位置1, 在sub = c的开头附加字符, 重置位置1 => 100

最右边的位在位置3, 在sub = ac的开头附加字符, 重置位置3 => 000

由于现在我们没有剩余的设置位, 因此我们将停止计算子序列。

范例:

binary_representation(1)= 001 => c

binary_representation(2)= 010 => b

binary_representation(3)= 011 => bc

binary_representation(4)= 100 =>一个

binary_representation(5)= 101 =>交流

二进制表示(6)= 110 => ab

binary_representation(7)= 111 => abc

下面是上述方法的实现:

C ++

// CPP code all Subsequences of a
// string in iterative manner
#include <bits/stdc++.h>
using namespace std;
  
// function to find subsequence
string subsequence(string s, int binary)
{
     string sub = "" ;
     int pos;
      
     // loop while binary is greater than 0
     while (binary>0)
     { 
         // get the position of rightmost set bit
         pos=log2(binary&-binary)+1;
          
         // append at beginning as we are 
         // going from LSB to MSB
         sub=s[pos-1]+sub;
          
         // resets bit at pos in binary
         binary= (binary & ~(1 << (pos-1)));
     }
     reverse(sub.begin(), sub.end());
     return sub;
}
  
// function to print all subsequences
void possibleSubsequences(string s){
  
     // map to store subsequence 
     // lexicographically by length
     map< int , set<string> > sorted_subsequence;
  
     int len = s.size();
      
     // Total number of non-empty subsequence
     // in string is 2^len-1
     int limit = pow (2, len);
      
     // i=0, corresponds to empty subsequence
     for ( int i = 1; i <= limit - 1; i++) { 
          
         // subsequence for binary pattern i
         string sub = subsequence(s, i);
          
         // storing sub in map
         sorted_subsequence[sub.length()].insert(sub);
     }
  
     for ( auto it : sorted_subsequence) { 
          
         // it.first is length of Subsequence
         // it.second is set<string>
         cout << "Subsequences of length = "
             << it.first << " are:" << endl;
              
         for ( auto ii : it.second)
              
             // ii is iterator of type set<string>
             cout << ii << " " ;
          
         cout << endl;
     }
}
  
// driver function
int main()
{
     string s = "aabc" ;
     possibleSubsequences(s);
      
     return 0;
}

Python3

# Python3 program to print all Subsequences
# of a string in an iterative manner
from math import log2, floor
  
# function to find subsequence
def subsequence(s, binary):
     sub = ""
      
     # loop while binary is greater than 
     while (binary > 0 ):
          
         # get the position of rightmost set bit
         pos = floor(log2(binary& - binary) + 1 )
          
         # append at beginning as we are 
         # going from LSB to MSB
         sub = s[pos - 1 ] + sub
          
         # resets bit at pos in binary
         binary = (binary & ~( 1 << (pos - 1 )))
  
     sub = sub[:: - 1 ]
     return sub
  
# function to print all subsequences
def possibleSubsequences(s):
  
     # map to store subsequence 
     # lexicographically by length
     sorted_subsequence = {}
  
     length = len (s)
      
     # Total number of non-empty subsequence
     # in string is 2^len-1
     limit = 2 * * length
      
     # i=0, corresponds to empty subsequence
     for i in range ( 1 , limit):
          
         # subsequence for binary pattern i
         sub = subsequence(s, i)
          
         # storing sub in map
         if len (sub) in sorted_subsequence.keys():
             sorted_subsequence[ len (sub)] = \
             tuple ( list (sorted_subsequence[ len (sub)]) + [sub])
         else :
             sorted_subsequence[ len (sub)] = [sub]
  
     for it in sorted_subsequence:
          
         # it.first is length of Subsequence
         # it.second is set<string>
         print ( "Subsequences of length =" , it, "are:" )
         for ii in sorted ( set (sorted_subsequence[it])):
              
             # ii is iterator of type set<string>
             print (ii, end = ' ' )
         print ()
  
# Driver Code
s = "aabc"
possibleSubsequences(s)
  
# This code is contributed by ankush_953

输出如下:

Subsequences of length = 1 are:
a b c 
Subsequences of length = 2 are:
aa ab ac bc 
Subsequences of length = 3 are:
aab aac abc 
Subsequences of length = 4 are:
aabc

时间复杂度:

O(2 ^ {n} * b)

, 其中n是找到子序列的字符串的长度, b是二进制字符串中设置的位数。


木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: