本文概述
给定两个二进制数组arr1 []和arr2 [], 它们的大小为n。求出最长公共跨度(i, j)的长度, 其中j> = i, 使得arr1 [i] + arr1 [i + 1] +…。 + arr1 [j] = arr2 [i] + arr2 [i + 1] +…。 + arr2 [j]。
预期时间复杂度为Θ(n)。
例子 :
Input: arr1[] = {0, 1, 0, 0, 0, 0};
arr2[] = {1, 0, 1, 0, 0, 1};
Output: 4
The longest span with same sum is from index 1 to 4.
Input: arr1[] = {0, 1, 0, 1, 1, 1, 1};
arr2[] = {1, 1, 1, 1, 1, 0, 1};
Output: 6
The longest span with same sum is from index 1 to 6.
Input: arr1[] = {0, 0, 0};
arr2[] = {1, 1, 1};
Output: 0
Input: arr1[] = {0, 0, 1, 0};
arr2[] = {1, 1, 1, 1};
Output: 1
强烈建议你在继续解决方案之前, 单击此处进行练习。
方法1(简单解决方案)
一一考虑两个阵列的相同子阵列。对于所有子数组, 请计算总和, 如果总和相同且当前长度大于最大长度, 则更新最大长度。下面是C ++实现的简单方法。
C ++
// A Simple C++ program to find longest common
// subarray of two binary arrays with same sum
#include<bits/stdc++.h>
using namespace std;
// Returns length of the longest common subarray
// with same sum
int longestCommonSum( bool arr1[], bool arr2[], int n)
{
// Initialize result
int maxLen = 0;
// One by one pick all possible starting points
// of subarrays
for ( int i=0; i<n; i++)
{
// Initialize sums of current subarrays
int sum1 = 0, sum2 = 0;
// Conider all points for starting with arr[i]
for ( int j=i; j<n; j++)
{
// Update sums
sum1 += arr1[j];
sum2 += arr2[j];
// If sums are same and current length is
// more than maxLen, update maxLen
if (sum1 == sum2)
{
int len = j-i+1;
if (len > maxLen)
maxLen = len;
}
}
}
return maxLen;
}
// Driver program to test above function
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof (arr1)/ sizeof (arr1[0]);
cout << "Length of the longest common span with same "
"sum is " << longestCommonSum(arr1, arr2, n);
return 0;
}
Java
// A Simple Java program to find longest common
// subarray of two binary arrays with same sum
class Test
{
static int arr1[] = new int []{ 0 , 1 , 0 , 1 , 1 , 1 , 1 };
static int arr2[] = new int []{ 1 , 1 , 1 , 1 , 1 , 0 , 1 };
// Returns length of the longest common sum in arr1[]
// and arr2[]. Both are of same size n.
static int longestCommonSum( int n)
{
// Initialize result
int maxLen = 0 ;
// One by one pick all possible starting points
// of subarrays
for ( int i= 0 ; i<n; i++)
{
// Initialize sums of current subarrays
int sum1 = 0 , sum2 = 0 ;
// Conider all points for starting with arr[i]
for ( int j=i; j<n; j++)
{
// Update sums
sum1 += arr1[j];
sum2 += arr2[j];
// If sums are same and current length is
// more than maxLen, update maxLen
if (sum1 == sum2)
{
int len = j-i+ 1 ;
if (len > maxLen)
maxLen = len;
}
}
}
return maxLen;
}
// Driver method to test the above function
public static void main(String[] args)
{
System.out.print( "Length of the longest common span with same sum is " );
System.out.println(longestCommonSum(arr1.length));
}
}
Python3
# A Simple python program to find longest common
# subarray of two binary arrays with same sum
# Returns length of the longest common subarray
# with same sum
def longestCommonSum(arr1, arr2, n):
# Initialize result
maxLen = 0
# One by one pick all possible starting points
# of subarrays
for i in range ( 0 , n):
# Initialize sums of current subarrays
sum1 = 0
sum2 = 0
# Conider all points for starting with arr[i]
for j in range (i, n):
# Update sums
sum1 + = arr1[j]
sum2 + = arr2[j]
# If sums are same and current length is
# more than maxLen, update maxLen
if (sum1 = = sum2):
len = j - i + 1
if ( len > maxLen):
maxLen = len
return maxLen
# Driver program to test above function
arr1 = [ 0 , 1 , 0 , 1 , 1 , 1 , 1 ]
arr2 = [ 1 , 1 , 1 , 1 , 1 , 0 , 1 ]
n = len (arr1)
print ( "Length of the longest common span with same "
"sum is" , longestCommonSum(arr1, arr2, n))
# This code is contributed by
# Smitha Dinesh Semwal
C#
// A Simple C# program to find
// longest common subarray of
// two binary arrays with same sum
using System;
class GFG
{
static int [] arr1 = new int []{0, 1, 0, 1, 1, 1, 1};
static int [] arr2 = new int []{1, 1, 1, 1, 1, 0, 1};
// Returns length of the longest
// common sum in arr1[] and arr2[].
// Both are of same size n.
static int longestCommonSum( int n)
{
// Initialize result
int maxLen = 0;
// One by one pick all possible
// starting points of subarrays
for ( int i = 0; i < n; i++)
{
// Initialize sums of current
// subarrays
int sum1 = 0, sum2 = 0;
// Conider all points for
// starting with arr[i]
for ( int j = i; j < n; j++)
{
// Update sums
sum1 += arr1[j];
sum2 += arr2[j];
// If sums are same and current
// length is more than maxLen, // update maxLen
if (sum1 == sum2)
{
int len = j - i + 1;
if (len > maxLen)
maxLen = len;
}
}
}
return maxLen;
}
// Driver Code
public static void Main()
{
Console.Write( "Length of the longest " +
"common span with same sum is " );
Console.Write(longestCommonSum(arr1.Length));
}
}
// This code is contributed
// by ChitraNayal
的PHP
<?php
// A Simple PHP program to find
// longest common subarray of
// two binary arrays with same sum
// Returns length of the longest
// common subarray with same sum
function longestCommonSum( $arr1 , $arr2 , $n )
{
// Initialize result
$maxLen = 0;
// One by one pick all possible
// starting points of subarrays
for ( $i = 0; $i < $n ; $i ++)
{
// Initialize sums of
// current subarrays
$sum1 = 0; $sum2 = 0;
// Conider all points
// for starting with arr[i]
for ( $j = $i ; $j < $n ; $j ++)
{
// Update sums
$sum1 += $arr1 [ $j ];
$sum2 += $arr2 [ $j ];
// If sums are same and current
// length is more than maxLen, // update maxLen
if ( $sum1 == $sum2 )
{
$len = $j - $i + 1;
if ( $len > $maxLen )
$maxLen = $len ;
}
}
}
return $maxLen ;
}
// Driver Code
$arr1 = array (0, 1, 0, 1, 1, 1, 1);
$arr2 = array (1, 1, 1, 1, 1, 0, 1);
$n = sizeof( $arr1 );
echo "Length of the longest common span " .
"with same " , "sum is " , longestCommonSum( $arr1 , $arr2 , $n );
// This code is contributed by aj_36
?>
输出:
Length of the longest common span with same sum is 6
时间复杂度:
上
2
)
辅助空间:
O(1)
方法2(使用辅助阵列)
该想法基于以下观察。
- 由于总共有n个元素, 因此两个数组的最大和为n。
- 两次和之间的差从-ntoñ。因此, 总共有2n +1个可能的差值。
- 如果两个数组的前缀和之间的差在两个点处相同, 则这两个点之间的子数组具有相同的和。
以下是完整算法。
- 创建大小为2n + 1的辅助数组, 以存储所有可能的差值的起点(请注意, 差的可能值从-n到n不等, 即, 总共有2n + 1个可能值)
- 将所有差异的起始点初始化为-1。
- 初始化最大长度为0, 两个数组的前缀和为0, preSum1= 0, preSum2= 0
- 从i = 0遍历两个数组到n-1。
- 更新前缀总和:preSum1 + = arr1 [i], preSum2 + = arr2 [i]
- 计算当前前缀和的差:curr_diff= preSum1 – preSum2
- 在差异数组中查找索引:diffIndex= n + curr_diff // curr_diff可以为负, 可以一直到-n
- Ifcurr_diff为0, 那么到目前为止i + 1为maxLen
- 否则curr_diff首次出现, 即当前diff的起始点为-1, 然后将起始点更新为i
- 其他(curr_diff第一次没有出现), 然后将i视为终点并找到当前相同总和跨度的长度。如果此长度更大, 则更新maxLen
- 返回maxLen
下面是上述算法的实现。
C ++
// A O(n) and O(n) extra space C++ program to find
// longest common subarray of two binary arrays with
// same sum
#include<bits/stdc++.h>
using namespace std;
// Returns length of the longest common sum in arr1[]
// and arr2[]. Both are of same size n.
int longestCommonSum( bool arr1[], bool arr2[], int n)
{
// Initialize result
int maxLen = 0;
// Initialize prefix sums of two arrays
int preSum1 = 0, preSum2 = 0;
// Create an array to store staring and ending
// indexes of all possible diff values. diff[i]
// would store starting and ending points for
// difference "i-n"
int diff[2*n+1];
// Initialize all starting and ending values as -1.
memset (diff, -1, sizeof (diff));
// Traverse both arrays
for ( int i=0; i<n; i++)
{
// Update prefix sums
preSum1 += arr1[i];
preSum2 += arr2[i];
// Comput current diff and index to be used
// in diff array. Note that diff can be negative
// and can have minimum value as -1.
int curr_diff = preSum1 - preSum2;
int diffIndex = n + curr_diff;
// If current diff is 0, then there are same number
// of 1's so far in both arrays, i.e., (i+1) is
// maximum length.
if (curr_diff == 0)
maxLen = i+1;
// If current diff is seen first time, then update
// starting index of diff.
else if ( diff[diffIndex] == -1)
diff[diffIndex] = i;
// Current diff is already seen
else
{
// Find length of this same sum common span
int len = i - diff[diffIndex];
// Update max len if needed
if (len > maxLen)
maxLen = len;
}
}
return maxLen;
}
// Driver code
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof (arr1)/ sizeof (arr1[0]);
cout << "Length of the longest common span with same "
"sum is " << longestCommonSum(arr1, arr2, n);
return 0;
}
Java
// A O(n) and O(n) extra space Java program to find
// longest common subarray of two binary arrays with
// same sum
class Test
{
static int arr1[] = new int []{ 0 , 1 , 0 , 1 , 1 , 1 , 1 };
static int arr2[] = new int []{ 1 , 1 , 1 , 1 , 1 , 0 , 1 };
// Returns length of the longest common sum in arr1[]
// and arr2[]. Both are of same size n.
static int longestCommonSum( int n)
{
// Initialize result
int maxLen = 0 ;
// Initialize prefix sums of two arrays
int preSum1 = 0 , preSum2 = 0 ;
// Create an array to store staring and ending
// indexes of all possible diff values. diff[i]
// would store starting and ending points for
// difference "i-n"
int diff[] = new int [ 2 *n+ 1 ];
// Initialize all starting and ending values as -1.
for ( int i = 0 ; i < diff.length; i++) {
diff[i] = - 1 ;
}
// Traverse both arrays
for ( int i= 0 ; i<n; i++)
{
// Update prefix sums
preSum1 += arr1[i];
preSum2 += arr2[i];
// Comput current diff and index to be used
// in diff array. Note that diff can be negative
// and can have minimum value as -1.
int curr_diff = preSum1 - preSum2;
int diffIndex = n + curr_diff;
// If current diff is 0, then there are same number
// of 1's so far in both arrays, i.e., (i+1) is
// maximum length.
if (curr_diff == 0 )
maxLen = i+ 1 ;
// If current diff is seen first time, then update
// starting index of diff.
else if ( diff[diffIndex] == - 1 )
diff[diffIndex] = i;
// Current diff is already seen
else
{
// Find length of this same sum common span
int len = i - diff[diffIndex];
// Update max len if needed
if (len > maxLen)
maxLen = len;
}
}
return maxLen;
}
// Driver method to test the above function
public static void main(String[] args)
{
System.out.print( "Length of the longest common span with same sum is " );
System.out.println(longestCommonSum(arr1.length));
}
}
python
# Python program to find longest common
# subarray of two binary arrays with
# same sum
def longestCommonSum(arr1, arr2, n):
# Initialize result
maxLen = 0
# Initialize prefix sums of two arrays
presum1 = presum2 = 0
# Create a dictionary to store indices
# of all possible sums
diff = {}
# Traverse both arrays
for i in range (n):
# Update prefix sums
presum1 + = arr1[i]
presum2 + = arr2[i]
# Compute current diff which will be
# used as index in diff dictionary
curr_diff = presum1 - presum2
# If current diff is 0, then there
# are same number of 1's so far in
# both arrays, i.e., (i+1) is
# maximum length.
if curr_diff = = 0 :
maxLen = i + 1
elif curr_diff not in diff:
# save the index for this diff
diff[curr_diff] = i
else :
# calculate the span length
length = i - diff[curr_diff]
maxLen = max (maxLen, length)
return maxLen
# Driver program
arr1 = [ 0 , 1 , 0 , 1 , 1 , 1 , 1 ]
arr2 = [ 1 , 1 , 1 , 1 , 1 , 0 , 1 ]
print ( "Length of the longest common" , " span with same" , end = " " )
print ( "sum is" , longestCommonSum(arr1, arr2, len (arr1)))
# This code is contributed by Abhijeet Nautiyal
C#
// A O(n) and O(n) extra space C# program
// to find longest common subarray of two
// binary arrays with same sum
using System;
class GFG
{
static int [] arr1 = new int []{0, 1, 0, 1, 1, 1, 1};
static int [] arr2 = new int []{1, 1, 1, 1, 1, 0, 1};
// Returns length of the longest
// common sum in arr1[] and arr2[].
// Both are of same size n.
static int longestCommonSum( int n)
{
// Initialize result
int maxLen = 0;
// Initialize prefix sums of
// two arrays
int preSum1 = 0, preSum2 = 0;
// Create an array to store staring
// and ending indexes of all possible
// diff values. diff[i] would store
// starting and ending points for
// difference "i-n"
int [] diff = new int [2 * n + 1];
// Initialize all starting and ending
// values as -1.
for ( int i = 0; i < diff.Length; i++)
{
diff[i] = -1;
}
// Traverse both arrays
for ( int i = 0; i < n; i++)
{
// Update prefix sums
preSum1 += arr1[i];
preSum2 += arr2[i];
// Compute current diff and index to
// be used in diff array. Note that
// diff can be negative and can have
// minimum value as -1.
int curr_diff = preSum1 - preSum2;
int diffIndex = n + curr_diff;
// If current diff is 0, then there
// are same number of 1's so far in
// both arrays, i.e., (i+1) is
// maximum length.
if (curr_diff == 0)
maxLen = i + 1;
// If current diff is seen first time, // then update starting index of diff.
else if ( diff[diffIndex] == -1)
diff[diffIndex] = i;
// Current diff is already seen
else
{
// Find length of this same
// sum common span
int len = i - diff[diffIndex];
// Update max len if needed
if (len > maxLen)
maxLen = len;
}
}
return maxLen;
}
// Driver Code
public static void Main()
{
Console.Write( "Length of the longest common " +
"span with same sum is " );
Console.WriteLine(longestCommonSum(arr1.Length));
}
}
// This code is contributed
// by Akanksha Rai(Abby_akku)
输出如下:
Length of the longest common span with same sum is 6
时间复杂度:Θ(n)
辅助空间:Θ(n)
方法3(使用哈希)
- 找到差异数组arr [], 使arr [i] = arr1 [i] – arr2 [i]。
- 最大数目等于0和1的子数组在差异数组中。
C ++
// C++ program to find largest subarray
// with equal number of 0's and 1's.
#include <bits/stdc++.h>
using namespace std;
// Returns largest common subarray with equal
// number of 0s and 1s in both of t
int longestCommonSum( bool arr1[], bool arr2[], int n)
{
// Find difference between the two
int arr[n];
for ( int i=0; i<n; i++)
arr[i] = arr1[i] - arr2[i];
// Creates an empty hashMap hM
unordered_map< int , int > hM;
int sum = 0; // Initialize sum of elements
int max_len = 0; // Initialize result
// Traverse through the given array
for ( int i = 0; i < n; i++)
{
// Add current element to sum
sum += arr[i];
// To handle sum=0 at last index
if (sum == 0)
max_len = i + 1;
// If this sum is seen before, // then update max_len if required
if (hM.find(sum) != hM.end())
max_len = max(max_len, i - hM[sum]);
else // Else put this sum in hash table
hM[sum] = i;
}
return max_len;
}
// Driver progra+m to test above function
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof (arr1)/ sizeof (arr1[0]);
cout << longestCommonSum(arr1, arr2, n);
return 0;
}
Java
// Java program to find largest subarray
// with equal number of 0's and 1's.
import java.io.*;
import java.util.*;
class GFG
{
// Returns largest common subarray with equal
// number of 0s and 1s
static int longestCommonSum( int [] arr1, int [] arr2, int n)
{
// Find difference between the two
int [] arr = new int [n];
for ( int i = 0 ; i < n; i++)
arr[i] = arr1[i] - arr2[i];
// Creates an empty hashMap hM
HashMap<Integer, Integer> hM = new HashMap<>();
int sum = 0 ; // Initialize sum of elements
int max_len = 0 ; // Initialize result
// Traverse through the given array
for ( int i = 0 ; i < n; i++)
{
// Add current element to sum
sum += arr[i];
// To handle sum=0 at last index
if (sum == 0 )
max_len = i + 1 ;
// If this sum is seen before, // then update max_len if required
if (hM.containsKey(sum))
max_len = Math.max(max_len, i - hM.get(sum));
else // Else put this sum in hash table
hM.put(sum, i);
}
return max_len;
}
// Driver code
public static void main(String args[])
{
int [] arr1 = { 0 , 1 , 0 , 1 , 1 , 1 , 1 };
int [] arr2 = { 1 , 1 , 1 , 1 , 1 , 0 , 1 };
int n = arr1.length;
System.out.println(longestCommonSum(arr1, arr2, n));
}
}
// This code is contributed by rachana soma
输出如下:
6
本文作者:苏米特·古普塔。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。