本文概述
数组的反转计数指示–数组要排序的距离(或距离)。如果已对数组进行排序, 则反转计数为0。如果以相反顺序对数组进行排序, 则反转计数为最大。
如果a [i]> a [j]并且i <j, 则两个元素a [i]和a [j]构成一个求逆。为简单起见, 我们可以假定所有元素都是唯一的。
例子:
Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions:
(8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1).
Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions:
(3, 1), (3, 2).
强烈建议你在继续解决方案之前, 单击此处进行练习。
我们已经讨论了以下解决反转计数的方法:
- 天真的和修改的合并排序
- 使用AVL树
我们建议你参考二进制索引树(BIT)在进一步阅读这篇文章之前。
使用大小为Θ(maxElement)的BIT的解决方案:
方法:
遍历数组, 并为每个索引找到数组右侧较小元素的数量。这可以使用BIT完成。对数组中所有索引的计数求和, 然后打印总和。
BIT背景:
- 对于大小为n的数组arr [], BIT基本支持两种操作:
- 元素的总和, 直到O(Log n)时间的arr [i]。
- 在O(Log n)时间中更新数组元素。
- BIT是使用数组实现的, 并且以树的形式工作。请注意, 有两种将BIT视为树的方法。
- 索引x的父级为" x –(x&-x)"的求和运算。
- 索引x的父级为" x +(x&-x)"的更新操作。
算法:
- 创建一个BIT, 以查找给定数字和变量中BIT中较小元素的数量结果= 0.
- 从头到尾遍历数组。
- 对于每个索引, 请检查BIT中存在多少个小于当前元素的数字, 并将其添加到结果中
- 要获取较小元素的数量, BIT的getSum()用来。
- 在他的基本思想中, BIT表示为大小等于最大元素加一的数组。这样就可以将元素用作索引。
- 之后, 我们通过执行将当前元素的计数从0更新为1的更新操作, 将当前元素添加到BIT []中, 从而更新BIT中当前元素的祖先(请参见BIT中的update()有关详细信息)。
实现
C ++
// C++ program to count inversions using Binary Indexed Tree
#include<bits/stdc++.h>
using namespace std;
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int getSum( int BITree[], int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void updateBIT( int BITree[], int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
int getInvCount( int arr[], int n)
{
int invcount = 0; // Initialize result
// Find maximum element in arr[]
int maxElement = 0;
for ( int i=0; i<n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to maxElement+1 (Extra
// one is used so that elements can be directly be
// used as index)
int BIT[maxElement+1];
for ( int i=1; i<=maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for ( int i=n-1; i>=0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i]-1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver program
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof (arr)/ sizeof ( int );
cout << "Number of inversions are : " << getInvCount(arr, n);
return 0;
}
Java
// Java program to count inversions
// using Binary Indexed Tree
class GFG
{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum( int [] BITree, int index)
{
int sum = 0 ; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0 )
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and all
// of its ancestors in tree.
static void updateBIT( int [] BITree, int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
static int getInvCount( int [] arr, int n)
{
int invcount = 0 ; // Initialize result
// Find maximum element in arr[]
int maxElement = 0 ;
for ( int i = 0 ; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to
// maxElement+1 (Extra one is used so
// that elements can be directly be
// used as index)
int [] BIT = new int [maxElement + 1 ];
for ( int i = 1 ; i <= maxElement; i++)
BIT[i] = 0 ;
// Traverse all elements from right.
for ( int i = n - 1 ; i >= 0 ; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1 );
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1 );
}
return invcount;
}
// Driver code
public static void main (String[] args)
{
int []arr = { 8 , 4 , 2 , 1 };
int n = arr.length;
System.out.println( "Number of inversions are : " +
getInvCount(arr, n));
}
}
// This code is contributed by mits
Python3
# Python3 program to count inversions using
# Binary Indexed Tree
# Returns sum of arr[0..index]. This function
# assumes that the array is preprocessed and
# partial sums of array elements are stored
# in BITree[].
def getSum( BITree, index):
sum = 0 # Initialize result
# Traverse ancestors of BITree[index]
while (index > 0 ):
# Add current element of BITree to sum
sum + = BITree[index]
# Move index to parent node in getSum View
index - = index & ( - index)
return sum
# Updates a node in Binary Index Tree (BITree)
# at given index in BITree. The given value
# 'val' is added to BITree[i] and all of its
# ancestors in tree.
def updateBIT(BITree, n, index, val):
# Traverse all ancestors and add 'val'
while (index < = n):
# Add 'val' to current node of BI Tree
BITree[index] + = val
# Update index to that of parent
# in update View
index + = index & ( - index)
# Returns count of inversions of size three
def getInvCount(arr, n):
invcount = 0 # Initialize result
# Find maximum element in arrays
maxElement = max (arr)
# Create a BIT with size equal to
# maxElement+1 (Extra one is used
# so that elements can be directly
# be used as index)
BIT = [ 0 ] * (maxElement + 1 )
for i in range ( 1 , maxElement + 1 ):
BIT[i] = 0
for i in range (n - 1 , - 1 , - 1 ):
invcount + = getSum(BIT, arr[i] - 1 )
updateBIT(BIT, maxElement, arr[i], 1 )
return invcount
# Driver code
if __name__ = = "__main__" :
arr = [ 8 , 4 , 2 , 1 ]
n = 4
print ( "Inversion Count : " , getInvCount(arr, n))
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)
C#
// C# program to count inversions
// using Binary Indexed Tree
using System;
class GFG
{
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
static int getSum( int []BITree, int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and all
// of its ancestors in tree.
static void updateBIT( int []BITree, int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Returns inversion count arr[0..n-1]
static int getInvCount( int []arr, int n)
{
int invcount = 0; // Initialize result
// Find maximum element in arr[]
int maxElement = 0;
for ( int i = 0; i < n; i++)
if (maxElement < arr[i])
maxElement = arr[i];
// Create a BIT with size equal to
// maxElement+1 (Extra one is used so
// that elements can be directly be
// used as index)
int [] BIT = new int [maxElement + 1];
for ( int i = 1; i <= maxElement; i++)
BIT[i] = 0;
// Traverse all elements from right.
for ( int i = n - 1; i >= 0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i] - 1);
// Add current element to BIT
updateBIT(BIT, maxElement, arr[i], 1);
}
return invcount;
}
// Driver code
static void Main()
{
int []arr = {8, 4, 2, 1};
int n = arr.Length;
Console.WriteLine( "Number of inversions are : " +
getInvCount(arr, n));
}
}
// This code is contributed by mits
的PHP
<?php
// PHP program to count inversions
// using Binary Indexed Tree
// Returns sum of arr[0..index].
// This function assumes that the
// array is preprocessed and partial
// sums of array elements are stored
// in BITree[].
function getSum( $BITree , $index )
{
$sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while ( $index > 0)
{
// Add current element of BITree to sum
$sum += $BITree [ $index ];
// Move index to parent node in getSum View
$index -= $index & (- $index );
}
return $sum ;
}
// Updates a node in Binary Index
// Tree (BITree) at given index
// in BITree. The given value 'val'
// is added to BITree[i] and
// all of its ancestors in tree.
function updateBIT(& $BITree , $n , $index , $val )
{
// Traverse all ancestors and add 'val'
while ( $index <= $n )
{
// Add 'val' to current node of BI Tree
$BITree [ $index ] += $val ;
// Update index to that of
// parent in update View
$index += $index & (- $index );
}
}
// Returns inversion count arr[0..n-1]
function getInvCount( $arr , $n )
{
$invcount = 0; // Initialize result
// Find maximum element in arr[]
$maxElement = 0;
for ( $i =0; $i < $n ; $i ++)
if ( $maxElement < $arr [ $i ])
$maxElement = $arr [ $i ];
// Create a BIT with size equal
// to maxElement+1 (Extra one is
// used so that elements can be
// directly be used as index)
$BIT = array_fill (0, $maxElement +1, 0);
// Traverse all elements from right.
for ( $i = $n -1; $i >=0; $i --)
{
// Get count of elements smaller than arr[i]
$invcount += getSum( $BIT , $arr [ $i ]-1);
// Add current element to BIT
updateBIT( $BIT , $maxElement , $arr [ $i ], 1);
}
return $invcount ;
}
// Driver program
$arr = array (8, 4, 2, 1);
$n = count ( $arr );
print ( "Number of inversions are : " .getInvCount( $arr , $n ));
// This code is contributed by mits
?>
输出如下:
Number of inversions are : 6
复杂度分析:
- 时间复杂度:-update函数和getSum函数运行O(log(maximumelement))。必须对数组中的每个元素运行getSum函数。因此, 总体时间复杂度为:O(nlog(maximumelement))。
- 辅助空间:O(maxElement), BIT所需的空间是最大元素大小的数组。
使用大小为Θ(n)的BIT更好的解决方案:
方法:
遍历数组, 并为每个索引找到数组右侧较小元素的数量。这可以使用BIT完成。对数组中所有索引的计数求和, 然后打印总和。该方法保持不变, 但是前一种方法的问题是它不适用于负数, 因为索引不能为负。想法是将给定数组转换为值从1到n的数组, 较小和较大元素的相对顺序保持不变。
例子:-
arr[] = {7, -90, 100, 1}
It gets converted to, arr[] = {3, 1, 4 , 2 }
as -90 < 1 < 7 < 100.
Explanation: Make a BIT array of a number of
elements instead of a maximum element. Changing
element will not have any change in the answer
as the greater elements remain greater and at the
same position.
算法:
- 创建一个BIT, 以查找给定数字和变量中BIT中较小元素的数量结果= 0.
- 先前的解决方案不适用于包含负元素的数组。因此, 将数组转换为包含元素相对编号的数组, 即制作原始数组的副本, 然后对数组的副本进行排序, 然后用已排序数组中相同元素的索引替换原始数组中的元素。
例如, 如果数组为{-3, 2, 0}, 则该数组将转换为{1, 3, 2} - 从头到尾遍历数组。
- 对于每个索引, 请检查BIT中存在多少个小于当前元素的数字, 并将其添加到结果中
实现
CPP
// C++ program to count inversions using Binary Indexed Tree
#include<bits/stdc++.h>
using namespace std;
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int getSum( int BITree[], int index)
{
int sum = 0; // Initialize result
// Traverse ancestors of BITree[index]
while (index > 0)
{
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void updateBIT( int BITree[], int n, int index, int val)
{
// Traverse all ancestors and add 'val'
while (index <= n)
{
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Converts an array to an array with values from 1 to n
// and relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 , 2 }
void convert( int arr[], int n)
{
// Create a copy of arrp[] in temp and sort the temp array
// in increasing order
int temp[n];
for ( int i=0; i<n; i++)
temp[i] = arr[i];
sort(temp, temp+n);
// Traverse all array elements
for ( int i=0; i<n; i++)
{
// lower_bound() Returns pointer to the first element
// greater than or equal to arr[i]
arr[i] = lower_bound(temp, temp+n, arr[i]) - temp + 1;
}
}
// Returns inversion count arr[0..n-1]
int getInvCount( int arr[], int n)
{
int invcount = 0; // Initialize result
// Convert arr[] to an array with values from 1 to n and
// relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 , 2 }
convert(arr, n);
// Create a BIT with size equal to maxElement+1 (Extra
// one is used so that elements can be directly be
// used as index)
int BIT[n+1];
for ( int i=1; i<=n; i++)
BIT[i] = 0;
// Traverse all elements from right.
for ( int i=n-1; i>=0; i--)
{
// Get count of elements smaller than arr[i]
invcount += getSum(BIT, arr[i]-1);
// Add current element to BIT
updateBIT(BIT, n, arr[i], 1);
}
return invcount;
}
// Driver program
int main()
{
int arr[] = {8, 4, 2, 1};
int n = sizeof (arr)/ sizeof ( int );
cout << "Number of inversions are : " << getInvCount(arr, n);
return 0;
}
Python3
# Python3 program to count inversions using Binary Indexed Tree
from bisect import bisect_left as lower_bound
# Returns sum of arr[0..index]. This function assumes
# that the array is preprocessed and partial sums of
# array elements are stored in BITree.
def getSum(BITree, index):
sum = 0 # Initialize result
# Traverse ancestors of BITree[index]
while (index > 0 ):
# Add current element of BITree to sum
sum + = BITree[index]
# Move index to parent node in getSum View
index - = index & ( - index)
return sum
# Updates a node in Binary Index Tree (BITree) at given index
# in BITree. The given value 'val' is added to BITree[i] and
# all of its ancestors in tree.
def updateBIT(BITree, n, index, val):
# Traverse all ancestors and add 'val'
while (index < = n):
# Add 'val' to current node of BI Tree
BITree[index] + = val
# Update index to that of parent in update View
index + = index & ( - index)
# Converts an array to an array with values from 1 to n
# and relative order of smaller and greater elements remains
# same. For example, 7, -90, 100, 1 is converted to
# 3, 1, 4 , 2
def convert(arr, n):
# Create a copy of arrp in temp and sort the temp array
# in increasing order
temp = [ 0 ] * (n)
for i in range (n):
temp[i] = arr[i]
temp = sorted (temp)
# Traverse all array elements
for i in range (n):
# lower_bound() Returns pointer to the first element
# greater than or equal to arr[i]
arr[i] = lower_bound(temp, arr[i]) + 1
# Returns inversion count arr[0..n-1]
def getInvCount(arr, n):
invcount = 0 # Initialize result
# Convert arr to an array with values from 1 to n and
# relative order of smaller and greater elements remains
# same. For example, 7, -90, 100, 1 is converted to
# 3, 1, 4 , 2
convert(arr, n)
# Create a BIT with size equal to maxElement+1 (Extra
# one is used so that elements can be directly be
# used as index)
BIT = [ 0 ] * (n + 1 )
# Traverse all elements from right.
for i in range (n - 1 , - 1 , - 1 ):
# Get count of elements smaller than arr[i]
invcount + = getSum(BIT, arr[i] - 1 )
# Add current element to BIT
updateBIT(BIT, n, arr[i], 1 )
return invcount
# Driver program
if __name__ = = '__main__' :
arr = [ 8 , 4 , 2 , 1 ]
n = len (arr)
print ( "Number of inversions are : " , getInvCount(arr, n))
# This code is contributed by mohit kumar 29
输出如下:
Number of inversions are : 6
复杂度分析:
- 时间复杂度:update函数和getSum函数针对O(log(n))运行。必须对数组中的每个元素运行getSum函数。因此, 总体时间复杂度为O(nlog(n))。
- 辅助空间:上)。
BIT所需的空间是大小为n的数组。
本文由Abhiraj Smit提供。如果发现任何不正确的地方, 或者你想分享有关上述主题的更多信息, 请发表评论