本文概述
给定N范围的L-R。任务是打印在给定范围内出现最大次数的数字。
注意:1 <= L <= R <= 106
例子:
输入:range [] = {{1, 6}, {2, 3}, {2, 5}, {3, 8}}输出:3 1在1范围内发生{1, 6} 2在3范围内发生3 {1, 6}, {2, 3}, {2, 5} 3在4范围内出现4 {1, 6}, {2, 3}, {2, 5}, {3, 8} 4在3中出现3范围{1, 6}, {2, 5}, {3, 8} 5在3范围内出现3 {1, 6}, {2, 5}, {3, 8} 6在2范围内出现2 , 6}, {3, 8} 7在1范围内出现1 {3, 8} 8在1范围内出现1 {3, 8}输入:range [] = {{1, 4}, {1, 9}, {1, 2}};输出1
推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。
方法:该方法类似于n范围内出现的最大整数。唯一不同的是找到范围的下限和上限。这样就无需从1遍历到MAX。
以下是解决此问题的分步算法:
- 用0初始化一个freq数组, 让数组的大小为10 ^ 6, 因为这是最大可能的值。
- 增加freq [l]乘1, 对于给定范围的每个起始索引。
- 减少freq [r + 1]减1给定范围的每个结束索引。
- 从最小L迭代到最大R, 然后将频率相加freq [i] + = freq [i-1].
- 最大值为freq [i]的索引就是答案。
- 存储索引并返回它。
下面是上述方法的实现:
C ++
// C++ program to check the most occurring
// element in given range
#include <bits/stdc++.h>
using namespace std;
// Function that returns the maximum element.
int maxOccurring( int range[][2], int n)
{
// freq array to store the frequency
int freq[( int )(1e6 + 2)] = { 0 };
int first = 0, last = 0;
// iterate and mark the hash array
for ( int i = 0; i < n; i++) {
int l = range[i][0];
int r = range[i][1];
// increase the hash array by 1 at L
freq[l] += 1;
// Decrease the hash array by 1 at R
freq[r + 1] -= 1;
first = min(first, l);
last = max(last, r);
}
// stores the maximum frequency
int maximum = 0;
int element = 0;
// check for the most occurring element
for ( int i = first; i <= last; i++) {
// increase the frequency
freq[i] = freq[i - 1] + freq[i];
// check if is more than the previous one
if (freq[i] > maximum) {
maximum = freq[i];
element = i;
}
}
return element;
}
// Driver code
int main()
{
int range[][2] = { { 1, 6 }, { 2, 3 }, { 2, 5 }, { 3, 8 } };
int n = 4;
// function call
cout << maxOccurring(range, n);
return 0;
}
Java
// Java program to check the most occurring
// element in given range
class GFG
{
// Function that returns the maximum element.
static int maxOccurring( int range[][], int n)
{
// freq array to store the frequency
int []freq = new int [( int )(1e6 + 2 )];
int first = 0 , last = 0 ;
// iterate and mark the hash array
for ( int i = 0 ; i < n; i++)
{
int l = range[i][ 0 ];
int r = range[i][ 1 ];
// increase the hash array by 1 at L
freq[l] += 1 ;
// Decrease the hash array by 1 at R
freq[r + 1 ] -= 1 ;
first = Math.min(first, l);
last = Math.max(last, r);
}
// stores the maximum frequency
int maximum = 0 ;
int element = 0 ;
// check for the most occurring element
for ( int i = first+ 1 ; i <= last; i++)
{
// increase the frequency
freq[i] = freq[i - 1 ] + freq[i];
// check if is more than the previous one
if (freq[i] > maximum)
{
maximum = freq[i];
element = i;
}
}
return element;
}
// Driver code
public static void main(String[] args)
{
int range[][] = { { 1 , 6 }, { 2 , 3 }, { 2 , 5 }, { 3 , 8 } };
int n = 4 ;
// function call
System.out.println(maxOccurring(range, n));
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program to check the most
# occurring element in given range
# Function that returns the
# maximum element.
def maxOccurring(range1, n):
# freq array to store the frequency
freq = [ 0 ] * 1000002 ;
first = 0 ;
last = 0 ;
# iterate and mark the hash array
for i in range (n):
l = range1[i][ 0 ];
r = range1[i][ 1 ];
# increase the hash array by 1 at L
freq[l] + = 1 ;
# Decrease the hash array by 1 at R
freq[r + 1 ] - = 1 ;
first = min (first, l);
last = max (last, r);
# stores the maximum frequency
maximum = 0 ;
element = 0 ;
# check for the most occurring element
for i in range (first, last + 1 ):
# increase the frequency
freq[i] = freq[i - 1 ] + freq[i];
# check if is more than the
# previous one
if (freq[i] > maximum):
maximum = freq[i];
element = i;
return element;
# Driver code
range1 = [[ 1 , 6 ], [ 2 , 3 ], [ 2 , 5 ], [ 3 , 8 ]];
n = 4 ;
# function call
print (maxOccurring(range1, n));
# This code is contributed by mits
C#
// C# program to check the most occurring
// element in given range
using System;
class GFG
{
// Function that returns the maximum element.
static int maxOccurring( int [, ]range, int n)
{
// freq array to store the frequency
int []freq = new int [( int )(1e6 + 2)];
int first = 0, last = 0;
// iterate and mark the hash array
for ( int i = 0; i < n; i++)
{
int l = range[i, 0];
int r = range[i, 1];
// increase the hash array by 1 at L
freq[l] += 1;
// Decrease the hash array by 1 at R
freq[r + 1] -= 1;
first = Math.Min(first, l);
last = Math.Max(last, r);
}
// stores the maximum frequency
int maximum = 0;
int element = 0;
// check for the most occurring element
for ( int i = first + 1; i <= last; i++)
{
// increase the frequency
freq[i] = freq[i - 1] + freq[i];
// check if is more than the previous one
if (freq[i] > maximum)
{
maximum = freq[i];
element = i;
}
}
return element;
}
// Driver code
public static void Main(String[] args)
{
int [, ]range = {{ 1, 6 }, { 2, 3 }, { 2, 5 }, { 3, 8 }};
int n = 4;
// function call
Console.WriteLine(maxOccurring(range, n));
}
}
// This code is contributed by Princi Singh
的PHP
<?php
// PHP program to check the most occurring
// element in given range
// Function that returns the maximum element.
function maxOccurring(& $range , $n )
{
// freq array to store the frequency
$freq = array (0, 1000002, NULL);
$first = 0;
$last = 0;
// iterate and mark the hash array
for ( $i = 0; $i < $n ; $i ++)
{
$l = $range [ $i ][0];
$r = $range [ $i ][1];
// increase the hash array
// by 1 at L
$freq [ $l ] += 1;
// Decrease the hash array
// by 1 at R
$freq [ $r + 1] -= 1;
$first = min( $first , $l );
$last = max( $last , $r );
}
// stores the maximum frequency
$maximum = 0;
$element = 0;
// check for the most occurring element
for ( $i = $first ; $i <= $last ; $i ++)
{
// increase the frequency
$freq [ $i ] = $freq [ $i - 1] + $freq [ $i ];
// check if is more than the
// previous one
if ( $freq [ $i ] > $maximum )
{
$maximum = $freq [ $i ];
$element = $i ;
}
}
return $element ;
}
// Driver code
$range = array ( array ( 1, 6 ), array ( 2, 3 ), array ( 2, 5 ), array ( 3, 8 ));
$n = 4;
// function call
echo maxOccurring( $range , $n );
// This code is contributed by ita_c
?>
输出如下:
3
注意:如果值L和T的数量级为108则上述方法将无效, 因为会出现内存错误。对于这些限制, 我们需要一种不同但相似的方法。你可能会考虑哈希。