算法设计:查找插入0的两个数组的最大点积

2021年3月17日18:06:05 发表评论 735 次浏览

本文概述

给定两个大小为m和n的正整数数组, 其中m> n。我们需要通过在第二个数组中插入零来最大化点积, 但是我们不能打扰元素的顺序。

例子:

Input : A[] = {2, 3 , 1, 7, 8} 
        B[] = {3, 6, 7}        
Output : 107
Explanation : We get maximum dot product after
inserting 0 at first and third positions in 
second array.
Maximum Dot Product : = A[i] * B[j] 
2*0 + 3*3 + 1*0 + 7*6 + 8*7 = 107

Input : A[] = {1, 2, 3, 6, 1, 4}
        B[] = {4, 5, 1}
Output : 46

询问:Directi面试

推荐:请在"实践首先, 在继续解决方案之前。

解决此问题的另一种方法是, 对于每对元素a [i]和B [j], 其中j> = i, 我们有两种选择:

  1. 我们将A [i]和B [j]相乘并加到乘积上(我们包括A [i])。
  2. 我们从乘积中排除A [i](换句话说, 我们在B []的当前位置插入0)

这个想法是使用动态编程.

1) Given Array A[] of size 'm' and B[] of size 'n'

2) Create 2D matrix 'DP[n + 1][m + 1]' initialize it
with '0'

3) Run loop outer loop for i = 1 to n
     Inner loop j = i to m

       // Two cases arise
       // 1) Include A[j]
       // 2) Exclude A[j] (insert 0 in B[])      
       dp[i][j]  = max(dp[i-1][j-1] + A[j-1] * B[i -1], dp[i][j-1]) 
      
    // Last return maximum dot product that is 
    return dp[n][m]

以下是上述想法的实现。

C ++

// C++ program to find maximum dot product of two array
#include<bits/stdc++.h>
using namespace std;
  
// Function compute Maximum Dot Product and
// return it
long long int MaxDotProduct( int A[], int B[], int m, int n)
{
     // Create 2D Matrix that stores dot product
     // dp[i+1][j+1] stores product considering B[0..i]
     // and A[0...j]. Note that since all m > n, we fill
     // values in upper diagonal of dp[][]
     long long int dp[n+1][m+1];
     memset (dp, 0, sizeof (dp));
  
     // Traverse through all elements of B[]
     for ( int i=1; i<=n; i++)
  
         // Consider all values of A[] with indexes greater
         // than or equal to i and compute dp[i][j]
         for ( int j=i; j<=m; j++)
  
             // Two cases arise
             // 1) Include A[j]
             // 2) Exclude A[j] (insert 0 in B[]) 
             dp[i][j] = max((dp[i-1][j-1] + (A[j-1]*B[i-1])) , dp[i][j-1]);
  
     // return Maximum Dot Product
     return dp[n][m] ;
}
  
// Driver program to test above function
int main()
{
     int A[] = { 2, 3 , 1, 7, 8 } ;
     int B[] = { 3, 6, 7 } ;
     int m = sizeof (A)/ sizeof (A[0]);
     int n = sizeof (B)/ sizeof (B[0]);
     cout << MaxDotProduct(A, B, m, n);
     return 0;
}

Java

// Java program to find maximum 
// dot product of two array
import java.util.*;
  
class GFG 
{
// Function to compute Maximum 
// Dot Product and return it
static int MaxDotProduct( int A[], int B[], int m, int n)
{
     // Create 2D Matrix that stores dot product
     // dp[i+1][j+1] stores product considering B[0..i]
     // and A[0...j]. Note that since all m > n, we fill
     // values in upper diagonal of dp[][]
     int dp[][] = new int [n + 1 ][m + 1 ];
     for ( int [] row : dp)
     Arrays.fill(row, 0 );
  
     // Traverse through all elements of B[]
     for ( int i = 1 ; i <= n; i++)
  
     // Consider all values of A[] with indexes greater
     // than or equal to i and compute dp[i][j]
     for ( int j = i; j <= m; j++)
  
         // Two cases arise
         // 1) Include A[j]
         // 2) Exclude A[j] (insert 0 in B[])
         dp[i][j] =
             Math.max((dp[i - 1 ][j - 1 ] + 
                     (A[j - 1 ] * B[i - 1 ])), dp[i][j - 1 ]);
  
     // return Maximum Dot Product
     return dp[n][m];
}
  
// Driver code
public static void main(String[] args) {
     int A[] = { 2 , 3 , 1 , 7 , 8 };
     int B[] = { 3 , 6 , 7 };
     int m = A.length;
     int n = B.length;
     System.out.print(MaxDotProduct(A, B, m, n));
}
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python 3 program to find maximum dot
# product of two array
  
# Function compute Maximum Dot Product 
# and return it
def MaxDotProduct(A, B, m, n):
      
     # Create 2D Matrix that stores dot product
     # dp[i+1][j+1] stores product considering 
     # B[0..i] and A[0...j]. Note that since 
     # all m > n, we fill values in upper 
     # diagonal of dp[][]
     dp = [[ 0 for i in range (m + 1 )] 
              for j in range (n + 1 )]
  
     # Traverse through all elements of B[]
     for i in range ( 1 , n + 1 , 1 ):
          
         # Consider all values of A[] with indexes 
         # greater than or equal to i and compute
         # dp[i][j]
         for j in range (i, m + 1 , 1 ):
              
             # Two cases arise
             # 1) Include A[j]
             # 2) Exclude A[j] (insert 0 in B[]) 
             dp[i][j] = max ((dp[i - 1 ][j - 1 ] + 
                             (A[j - 1 ] * B[i - 1 ])) , dp[i][j - 1 ])
  
     # return Maximum Dot Product
     return dp[n][m] 
  
# Driver Code
if __name__ = = '__main__' :
     A = [ 2 , 3 , 1 , 7 , 8 ]
     B = [ 3 , 6 , 7 ]
     m = len (A)
     n = len (B)
     print (MaxDotProduct(A, B, m, n))
  
# This code is contributed by
# Sanjit_Prasad

C#

// C# program to find maximum 
// dot product of two array
using System; 
  
public class GFG{
  
     // Function to compute Maximum 
     // Dot Product and return it
     static int MaxDotProduct( int []A, int []B, int m, int n)
     {
         // Create 2D Matrix that stores dot product
         // dp[i+1][j+1] stores product considering B[0..i]
         // and A[0...j]. Note that since all m > n, we fill
         // values in upper diagonal of dp[][]
         int [, ]dp = new int [n + 1, m + 1];
  
         // Traverse through all elements of B[]
         for ( int i = 1; i <= n; i++)
  
         // Consider all values of A[] with indexes greater
         // than or equal to i and compute dp[i][j]
         for ( int j = i; j <= m; j++)
  
             // Two cases arise
             // 1) Include A[j]
             // 2) Exclude A[j] (insert 0 in B[])
             dp[i, j] =
                 Math.Max((dp[i - 1, j - 1] + 
                         (A[j - 1] * B[i - 1])), dp[i, j - 1]);
  
         // return Maximum Dot Product
         return dp[n, m];
     }
  
     // Driver code
     public static void Main() {
         int []A = {2, 3, 1, 7, 8};
         int []B = {3, 6, 7};
         int m = A.Length;
         int n = B.Length;
         Console.Write(MaxDotProduct(A, B, m, n));
     }
}
  
/*This code is contributed by 29AjayKumar*/

输出如下:

107

时间复杂度:氧(nm)

如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: