本文概述
给定一个数组, 为每个元素打印下一个更大元素(NGE)。元素x的下一个更大元素是数组x中右侧第一个更大的元素。对于没有更大元素的元素, 请将下一个更大元素视为-1。下一个更大的元素应按与输入数组相同的顺序打印。
例子:
输入:arr [] = [4, 5, 2, 25}输出:5 25 25 -1输入:arr [] = [4, 5, 2, 25, 10}输出:5 25 25 -1 -1
推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。
我们已经讨论了解决方案这里不会打印相同的订单。在这里, 我们从最右边的元素遍历数组。
- 在这种方法中, 我们开始从最后一个元素(nth)迭代到第一个(1st)元素
好处是, 当我们到达某个索引时, 他的下一个更大的元素将已经在堆栈中, 并且可以在同一索引处直接获取此元素。 - 达到某个索引后, 我们将弹出堆栈, 直到从当前元素获得更大的元素, 并且该元素将成为当前元素的答案
- 如果在执行弹出操作时堆栈变空, 则答案为-1
然后, 我们将答案存储在当前索引的数组中。
下面是上述方法的实现:
C ++
// A Stack based C++ program to find next
// greater element for all array elements
// in same order as input.
#include <bits/stdc++.h>
using namespace std;
/* prints element and NGE pair for all
elements of arr[] of size n */
void printNGE( int arr[], int n)
{
stack< int > s;
int arr1[n];
// iterating from n-1 to 0
for ( int i = n - 1; i >= 0; i--)
{
/*We will pop till we get the
greater element on top or stack gets empty*/
while (!s.empty() && s.top() <= arr[i])
s.pop();
/*if stack gots empty means there
is no element on right which is greater
than the current element.
if not empty then the next greater
element is on top of stack*/
if (s.empty())
arr1[i] = -1;
else
arr1[i] = s.top();
s.push(arr[i]);
}
for ( int i = 0; i < n; i++)
cout << arr[i] << " ---> " << arr1[i] << endl;
}
/* Driver program to test above functions */
int main()
{
int arr[] = { 11, 13, 21, 3 };
int n = sizeof (arr) / sizeof (arr[0]);
printNGE(arr, n);
return 0;
}
Java
// A Stack based Java program to find next
// greater element for all array elements
// in same order as input.
import java.util.*;
class GfG {
/* prints element and NGE pair for all
elements of arr[] of size n */
static void printNGE( int arr[], int n)
{
Stack<Integer> s = new Stack<Integer>();
int arr1[] = new int [n];
// iterating from n-1 to 0
for ( int i = n - 1 ; i >= 0 ; i--)
{
/*We will pop till we get the
greater element on top or stack gets empty*/
while (!s.isEmpty() && s.peek() <= arr[i])
s.pop();
/*if stack gots empty means there
is no element on right which is greater
than the current element.
if not empty then the next greater
element is on top of stack*/
if (s.empty())
arr1[i] = - 1 ;
else
arr1[i] = s.peek();
s.push(arr[i]);
}
for ( int i = 0 ; i < n; i++)
System.out.println(arr[i] + " ---> " + arr1[i]);
}
/* Driver program to test above functions */
public static void main(String[] args)
{
int arr[] = { 11 , 13 , 21 , 3 };
int n = arr.length;
printNGE(arr, n);
}
}
Python3
# A Stack based Python3 program to find next
# greater element for all array elements
# in same order as input.
# prints element and NGE pair for all
# elements of arr[] of size n
def printNGE(arr, n):
s = list ()
arr1 = [ 0 for i in range (n)]
# iterating from n-1 to 0
for i in range (n - 1 , - 1 , - 1 ):
# We will pop till we get the greater
# element on top or stack gets empty
while ( len (s) > 0 and s[ - 1 ] < = arr[i]):
s.pop()
# if stack gots empty means there
# is no element on right which is
# greater than the current element.
# if not empty then the next greater
# element is on top of stack
if ( len (s) = = 0 ):
arr1[i] = - 1
else :
arr1[i] = s[ - 1 ]
s.append(arr[i])
for i in range (n):
print (arr[i], " ---> " , arr1[i] )
# Driver Code
arr = [ 11 , 13 , 21 , 3 ]
n = len (arr)
printNGE(arr, n)
# This code is contributed by Mohit kumar 29
C#
// A Stack based C# program to find next
// greater element for all array elements
// in same order as input.
using System;
using System.Collections.Generic;
class GFG
{
/* prints element and NGE pair for all
elements of arr[] of size n */
static void printNGE( int []arr, int n)
{
Stack< int > s = new Stack< int >();
int []arr1 = new int [n];
// iterating from n-1 to 0
for ( int i = n - 1; i >= 0; i--)
{
/*We will pop till we get the
greater element on top or stack gets empty*/
while (s.Count != 0 && s.Peek() <= arr[i])
s.Pop();
/*if stack gots empty means there
is no element on right which is greater
than the current element.
if not empty then the next greater
element is on top of stack*/
if (s.Count == 0)
arr1[i] = -1;
else
arr1[i] = s.Peek();
s.Push(arr[i]);
}
for ( int i = 0; i < n; i++)
Console.WriteLine(arr[i] + " ---> " +
arr1[i]);
}
// Driver Code
public static void Main(String[] args)
{
int []arr = { 11, 13, 21, 3 };
int n = arr.Length;
printNGE(arr, n);
}
}
// This code is contributed by Ajay Kumar
输出:
11 -- 13
13 -- 21
21 -- -1
3 -- -1
时间复杂度:
上)
辅助空间:
O(n)如果要以相反的顺序打印每个元素的下一个较大的部分, 则不需要多余的空间(首先是指最后一个元素, 然后是倒数第二个, 依此类推, 直到第一个元素)