本文概述
给定边m和n的矩形。将矩形切成较小的相同块, 以使每个块都是一个正方形, 其边长应尽可能大, 而矩形的剩余部分应没有。这样的正方形的打印其数量。
例子:
Input: 9 6
Output: 6
Rectangle can be cut into squares of size 3.
Input: 4 2
Output: 2
Rectangle can be cut into squares of size 2.
方法:
任务是将矩形切成边长为s的正方形, 而矩形的剩余部分不留, 因此
s
必须将两者分开
米
和
ñ
。同样, 正方形的边应尽可能大, 因此, s应该是m和n的最大公约数。
所以,
s = gcd(m, n)
.
为了找到矩形被切成的正方形数, 要做的任务是将矩形的面积除以大小为s的正方形的面积。
C ++
// C++ code for calculating the
// number of squares
#include <bits/stdc++.h>
using namespace std;
// Function to find number of squares
int NumberOfSquares( int x, int y)
{
// Here in built c++ gcd function is used
int s = __gcd(x, y);
int ans = (x * y) / (s * s);
return ans;
}
// Driver code
int main()
{
int m = 385, n = 60;
// Call the function NumberOfSquares
cout << NumberOfSquares(m, n);
return 0;
}
Java
// Java code for calculating
// the number of squares
import java.io.*;
class GFG
{
// Recursive function to
// return gcd of a and b
static int __gcd( int a, int b)
{
// Everything divides 0
if (a == 0 || b == 0 )
return 0 ;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
// Function to find
// number of squares
static int NumberOfSquares( int x, int y)
{
// Here in built c++
// gcd function is used
int s = __gcd(x, y);
int ans = (x * y) / (s * s);
return ans;
}
// Driver Code
public static void main (String[] args)
{
int m = 385 , n = 60 ;
// Call the function
// NumberOfSquares
System.out.println(NumberOfSquares(m, n));
}
}
// This code is contributed by anuj_67.
Python3
# Python3 code for calculating
# the number of squares
# Recursive function to
# return gcd of a and b
def __gcd(a, b):
# Everything divides 0
if (a = = 0 or b = = 0 ):
return 0 ;
# base case
if (a = = b):
return a;
# a is greater
if (a > b):
return __gcd(a - b, b);
return __gcd(a, b - a);
# Function to find
# number of squares
def NumberOfSquares(x, y):
# Here in built PHP
# gcd function is used
s = __gcd(x, y);
ans = (x * y) / (s * s);
return int (ans);
# Driver Code
m = 385 ;
n = 60 ;
# Call the function
# NumberOfSquares
print (NumberOfSquares(m, n));
# This code is contributed
# by mit
C#
// C# code for calculating
// the number of squares
using System;
class GFG
{
// Recursive function to
// return gcd of a and b
static int __gcd( int a, int b)
{
// Everything divides 0
if (a == 0 || b == 0)
return 0;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
// Function to find
// number of squares
static int NumberOfSquares( int x, int y)
{
// Here in built c++
// gcd function is used
int s = __gcd(x, y);
int ans = (x * y) /
(s * s);
return ans;
}
// Driver Code
static public void Main ()
{
int m = 385, n = 60;
// Call the function
// NumberOfSquares
Console.WriteLine(NumberOfSquares(m, n));
}
}
// This code is contributed by ajit
的PHP
<?php
// PHP code for calculating
// the number of squares
// Recursive function to
// return gcd of a and b
function __gcd( $a , $b )
{
// Everything divides 0
if ( $a == 0 || $b == 0)
return 0;
// base case
if ( $a == $b )
return $a ;
// a is greater
if ( $a > $b )
return __gcd( $a - $b , $b );
return __gcd( $a , $b - $a );
}
// Function to find
// number of squares
function NumberOfSquares( $x , $y )
{
// Here in built PHP
// gcd function is used
$s = __gcd( $x , $y );
$ans = ( $x * $y ) /
( $s * $s );
return $ans ;
}
// Driver Code
$m = 385;
$n = 60;
// Call the function
// NumberOfSquares
echo (NumberOfSquares( $m , $n ));
// This code is contributed
// by akt_mit
?>
输出如下:
924