numpy.sum(arr, axis, dtype, out):此函数返回指定轴上的数组元素的总和。
参数:arr:输入数组。 axis:我们要沿其计算总和值的轴。否则, 它将认为arr是平坦的(在所有轴上均有效)。 axis = 0表示沿列, 而axis = 1表示沿行。 out:要在其中放置结果的另一个数组。数组必须具有与预期输出相同的尺寸。默认为无。 initial:[标量, 可选]和的起始值。返回值:数组元素的总和(如果轴不存在, 则为标量值)或具有沿指定轴的总和的数组。
代码1:
# Python Program illustrating
# numpy.sum() method
import numpy as np
# 1D array
arr = [ 20 , 2 , . 2 , 10 , 4 ]
print ( "\nSum of arr : " , np. sum (arr))
print ( "Sum of arr(uint8) : " , np. sum (arr, dtype = np.uint8))
print ( "Sum of arr(float32) : " , np. sum (arr, dtype = np.float32))
print ( "\nIs np.sum(arr).dtype == np.uint : " , np. sum (arr).dtype = = np.uint)
print ( "Is np.sum(arr).dtype == np.float : " , np. sum (arr).dtype = = np. float )
输出如下:
Sum of arr : 36.2
Sum of arr(uint8) : 36
Sum of arr(float32) : 36.2
Is np.sum(arr).dtype == np.uint : False
Is np.sum(arr).dtype == np.uint : True
代码2:
# Python Program illustrating
# numpy.sum() method
import numpy as np
# 2D array
arr = [[ 14 , 17 , 12 , 33 , 44 ], [ 15 , 6 , 27 , 8 , 19 ], [ 23 , 2 , 54 , 1 , 4 , ]]
print ( "\nSum of arr : " , np. sum (arr))
print ( "Sum of arr(uint8) : " , np. sum (arr, dtype = np.uint8))
print ( "Sum of arr(float32) : " , np. sum (arr, dtype = np.float32))
print ( "\nIs np.sum(arr).dtype == np.uint : " , np. sum (arr).dtype = = np.uint)
print ( "Is np.sum(arr).dtype == np.uint : " , np. sum (arr).dtype = = np. float )
输出如下:
Sum of arr : 279
Sum of arr(uint8) : 23
Sum of arr(float32) : 279.0
Is np.sum(arr).dtype == np.uint : False
Is np.sum(arr).dtype == np.uint : False
代码3:
# Python Program illustrating
# numpy.sum() method
import numpy as np
# 2D array
arr = [[ 14 , 17 , 12 , 33 , 44 ], [ 15 , 6 , 27 , 8 , 19 ], [ 23 , 2 , 54 , 1 , 4 , ]]
print ( "\nSum of arr : " , np. sum (arr))
print ( "Sum of arr(axis = 0) : " , np. sum (arr, axis = 0 ))
print ( "Sum of arr(axis = 1) : " , np. sum (arr, axis = 1 ))
print ( "\nSum of arr (keepdimension is True): \n" , np. sum (arr, axis = 1 , keepdims = True ))
输出如下:
Sum of arr : 279
Sum of arr(axis = 0) : [52 25 93 42 67]
Sum of arr(axis = 1) : [120 75 84]
Sum of arr (keepdimension is True):
[[120]
[ 75]
[ 84]]
首先, 你的面试准备可通过以下方式增强你的数据结构概念:Python DS课程。