本文概述
给定大小为r * c的按行排序的矩阵, 我们需要找到给定矩阵的中位数。假定r * c总是奇数。
例子:
Input : 1 3 5
2 6 9
3 6 9
Output : Median is 5
If we put all the values in a sorted
array A[] = 1 2 3 3 5 6 6 9 9)
Input: 1 3 4
2 5 6
7 8 9
Output: Median is 5
推荐:请在"
实践
首先, 在继续解决方案之前。
简单方法
:解决此问题的最简单方法是将给定矩阵的所有元素存储在大小为r * c的数组中。然后我们可以对数组进行排序并在O(r * clog(r * c))中找到中值元素, 也可以使用讨论的方法
这里
在O(r * c)中找到中位数。在两种情况下, 所需的辅助空间均为O(r * c)。
An
有效的方法
对于这个问题是使用
二进制搜索
算法。这个想法是, 要使一个数字成为中位数, 应该有确切的(n / 2)个数字小于该数字。因此, 我们尝试找到少于所有数字的数字计数。以下是此方法的分步算法:
算法
:
- 首先, 我们在矩阵中找到最小和最大元素。可以通过比较每行的第一个元素轻松找到最小元素, 类似地, 可以通过比较每行的最后一个元素找到最大元素。
- 然后, 我们对从最小值到最大值的数字范围进行二进制搜索, 找到最小值和最大值的中位数, 并得到少于中位数的数字计数。并相应地更改最小值或最大值。
- 为了使数字中位数, 应该有比该数字小(r * c)/ 2个数字。因此, 对于每个数字, 我们通过在矩阵的每一行中使用upper_bound()来获得小于该数字的计数, 如果小于所需计数, 则中位数必须大于所选数字, 否则中位数必须为小于或等于所选数字。
下面是上述方法的实现:
C ++
// C++ program to find median of a matrix
// sorted row wise
#include<bits/stdc++.h>
using namespace std;
const int MAX = 100;
// function to find median in the matrix
int binaryMedian( int m[][MAX], int r , int c)
{
int min = INT_MAX, max = INT_MIN;
for ( int i=0; i<r; i++)
{
// Finding the minimum element
if (m[i][0] < min)
min = m[i][0];
// Finding the maximum element
if (m[i][c-1] > max)
max = m[i][c-1];
}
int desired = (r * c + 1) / 2;
while (min < max)
{
int mid = min + (max - min) / 2;
int place = 0;
// Find count of elements smaller than mid
for ( int i = 0; i < r; ++i)
place += upper_bound(m[i], m[i]+c, mid) - m[i];
if (place < desired)
min = mid + 1;
else
max = mid;
}
return min;
}
// driver program to check above functions
int main()
{
int r = 3, c = 3;
int m[][MAX]= { {1, 3, 5}, {2, 6, 9}, {3, 6, 9} };
cout << "Median is " << binaryMedian(m, r, c) << endl;
return 0;
}
Java
// Java program to find median of a matrix
// sorted row wise
import java.util.Arrays;
public class MedianInRowSorted
{
// function to find median in the matrix
static int binaryMedian( int m[][], int r, int c)
{
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for ( int i= 0 ; i<r ; i++)
{
// Finding the minimum element
if (m[i][ 0 ] < min)
min = m[i][ 0 ];
// Finding the maximum element
if (m[i][c- 1 ] > max)
max = m[i][c- 1 ];
}
int desired = (r * c + 1 ) / 2 ;
while (min < max)
{
int mid = min + (max - min) / 2 ;
int place = 0 ;
int get = 0 ;
// Find count of elements smaller than mid
for ( int i = 0 ; i < r; ++i)
{
get = Arrays.binarySearch(m[i], mid);
// If element is not found in the array the
// binarySearch() method returns
// (-(insertion_point) - 1). So once we know
// the insertion point we can find elements
// Smaller than the searched element by the
// following calculation
if (get < 0 )
get = Math.abs(get) - 1 ;
// If element is found in the array it returns
// the index(any index in case of duplicate). So we go to last
// index of element which will give the number of
// elements smaller than the number including
// the searched element.
else
{
while (get < m[i].length && m[i][get] == mid)
get += 1 ;
}
place = place + get;
}
if (place < desired)
min = mid + 1 ;
else
max = mid;
}
return min;
}
// Driver Program to test above method.
public static void main(String[] args)
{
int r = 3 , c = 3 ;
int m[][]= { { 1 , 3 , 5 }, { 2 , 6 , 9 }, { 3 , 6 , 9 } };
System.out.println( "Median is " + binaryMedian(m, r, c));
}
}
// This code is contributed by Sumit Ghosh
Python3
# Python program to find median of matrix
# sorted row wise
from bisect import bisect_right as upper_bound
MAX = 100 ;
# Function to find median in the matrix
def binaryMedian(m, r, d):
mi = m[ 0 ][ 0 ]
mx = 0
for i in range (r):
if m[i][ 0 ] < mi:
mi = m[i][ 0 ]
if m[i][d - 1 ] > mx :
mx = m[i][d - 1 ]
desired = (r * d + 1 ) / / 2
while (mi < mx):
mid = mi + (mx - mi) / / 2
place = [ 0 ];
# Find count of elements smaller than mid
for i in range (r):
j = upper_bound(m[i], mid)
place[ 0 ] = place[ 0 ] + j
if place[ 0 ] < desired:
mi = mid + 1
else :
mx = mid
print ( "Median is" , mi)
return
# Driver code
r, d = 3 , 3
m = [ [ 1 , 3 , 5 ], [ 2 , 6 , 9 ], [ 3 , 6 , 9 ]]
binaryMedian(m, r, d)
# This code is contributed by Sachin BIsht
C#
// C# program to find median
// of a matrix sorted row wise
using System;
class MedianInRowSorted{
// Function to find median
// in the matrix
static int binaryMedian( int [, ]m, int r, int c)
{
int max = int .MinValue;
int min = int .MaxValue;
for ( int i = 0; i < r; i++)
{
// Finding the minimum
// element
if (m[i, 0] < min)
min = m[i, 0];
// Finding the maximum
// element
if (m[i, c - 1] > max)
max = m[i, c - 1];
}
int desired = (r * c + 1) / 2;
while (min < max)
{
int mid = min + (max - min) / 2;
int place = 0;
int get = 0;
// Find count of elements
// smaller than mid
for ( int i = 0; i < r; ++i)
{
get = Array.BinarySearch(
GetRow(m, i), mid);
// If element is not found
// in the array the binarySearch()
// method returns (-(insertion_
// point) - 1). So once we know
// the insertion point we can
// find elements Smaller than
// the searched element by the
// following calculation
if ( get < 0)
get = Math.Abs( get ) - 1;
// If element is found in the
// array it returns the index(any
// index in case of duplicate). So
// we go to last index of element
// which will give the number of
// elements smaller than the number
// including the searched element.
else
{
while ( get < GetRow(m, i).GetLength(0) &&
m[i, get ] == mid)
get += 1;
}
place = place + get ;
}
if (place < desired)
min = mid + 1;
else
max = mid;
}
return min;
}
public static int [] GetRow( int [, ] matrix, int row)
{
var rowLength = matrix.GetLength(1);
var rowVector = new int [rowLength];
for ( var i = 0; i < rowLength; i++)
rowVector[i] = matrix[row, i];
return rowVector;
}
// Driver code
public static void Main(String[] args)
{
int r = 3, c = 3;
int [, ]m = {{1, 3, 5}, {2, 6, 9}, {3, 6, 9} };
Console.WriteLine( "Median is " +
binaryMedian(m, r, c));
}
}
// This code is contributed by Princi Singh
输出如下:
Median is 5