逻辑回归和决策树分类是当今使用的两种最流行和最基本的分类算法。没有一种算法比另一种算法更好, 并且一个人的出色性能通常归因于正在处理的数据的性质。 我们可以在不同类别上比较这两种算法– 标准 逻辑回归...
ML使用SVM对非线性数据集执行分类
先决条件: 支持向量机 超平面和SVM分类器的定义: 对于具有n个特征的线性可分离数据集(因此需要n个维表示), 超平面基本上是一个(n – 1)维子空间, 用于将数据集分为两组, 每个组包含属于不同...
ML使用Sklearn投票分类器详细指南
投票分类器是一种机器学习模型, 它在众多模型的整体上进行训练, 并根据其将选定类别作为输出的最高概率来预测输出(类别)。 它只是汇总传递给"投票分类器"的每个分类器的结果, 并根据最高的投票预测输出类...
ML为什么要在分类中进行逻辑回归?
使用线性回归, 所有> = 0.5的预测都可以被视为1, 而其余所有<0.5的预测都可以被视为0。但是随后出现了一个问题, 为什么不能使用它进行分类? 问题– 假设我们将邮件分类为垃圾邮件...
ML模糊聚类详细介绍和指南
先决条件: 机器学习中的聚类 什么是聚类? 聚类是一种无监督的机器学习技术, 可根据给定数据彼此之间的距离(相似性)将其分为不同的簇。 无监督k均值聚类算法将位于某个特定聚类中的任何点的值设置为0或1...
ML用于特征选择的额外树分类器
先决条件: 决策树分类器 极随机树分类器(额外树分类器)是一种整体学习技术, 可将在"森林"中收集的多个不相关的决策树的结果进行汇总, 以输出其分类结果。从概念上讲, 它与随机森林分类器非常相似, 唯...
ML分类与回归介绍和区别
先决条件:分类和回归 分类和回归是两个主要的预测问题, 通常会与数据挖掘和机器学习一起处理。 分类是查找或发现模型或函数的过程, 该过程有助于将数据分为多个类别, 即离散值。在分类中, 根据输入中提供...
ML使用Scikit-learn进行癌细胞分类
机器学习是人工智能的一个子领域, 它使系统能够学习自身, 而无需进行显式编程即可学习。机器学习可用于解决许多现实问题。 让我们根据癌细胞的特征对它们进行分类,识别它们是“恶性的”还是“良性的”。我们将...
高级算法:R编程中的随机森林分类方法
随机森林法是监督的非线性分类和回归算法。分类是将类别或类别的一组数据集分类的过程。作为随机森林方法, 可以根据用户和所需的目标或类别使用分类或回归技术。随机森林是决策树的集合, 这些决策树以更高的概率...
CSS实现分页详细实现代码
分页用于将内容分成简短且易于理解的离散页面。 Materialize CSS提供了一些类来创建一个分页栏, 该分页栏包含指向其他页面的链接。 的分页class用于将<ul>列表元素设置为分...