ML算法:局部加权线性回归 IT技术

ML算法:局部加权线性回归

先决条件:ML |线性回归 线性回归是一种监督型学习算法, 用于计算输入(X)和输出(Y)之间的线性关系。 普通线性回归涉及的步骤是: 培训阶段:计算以最小化成本。预测输出:对于给定的查询点, 从下图...
阅读全文
ML算法:使用Python进行Logistic回归 Python

ML算法:使用Python进行Logistic回归

先决条件:了解逻辑回归 用户数据库–该数据集包含来自公司数据库的用户信息。它包含有关用户ID, 性别, 年龄, 预估工资, 已购买的信息。我们正在使用该数据集预测用户是否会购买公司的新产品。 数据– ...
阅读全文
ML:什么是机器学习? Python

ML:什么是机器学习?

人工智能和电脑游戏领域的先驱阿瑟·塞缪尔创造了“机器学习”这个术语。他将机器学习定义为:“一种研究领域,它让计算机能够在没有明确编程的情况下进行学习。” 以非常普通的方式, 机器学习(ML)可以解释为...
阅读全文
ML算法:均值漂移聚类详细介绍 Python

ML算法:均值漂移聚类详细介绍

均值漂移与无监督学习相反, 无监督学习通过将点朝着模式转移来将数据点迭代地分配给聚类(在均值偏移的情况下, 模式是该区域中数据点的最高密度)。因此, 它也被称为寻模算法。均值漂移算法在图像处理和计算机...
阅读全文
ML算法:Python的小批量梯度下降 Python

ML算法:Python的小批量梯度下降

在机器学习中, 梯度下降是一种用于计算模型参数(系数和偏差)的优化技术, 用于线性回归, 对数回归, 神经网络等算法。在此技术中, 我们反复遍历训练集并更新模型相对于训练集的误差梯度的参数。 根据更新...
阅读全文
ML算法:迷你批量K均值聚类算法 Python

ML算法:迷你批量K均值聚类算法

先决条件:K均值聚类中K的最优值 K均值是最流行的聚类算法之一, 主要是因为其良好的时间性能。随着所分析的数据集大小的增加, K均值的计算时间增加了, 因为它需要在主存储器中存储整个数据集。由于这个原...
阅读全文
ML算法:基于动量的梯度优化器介绍 Python

ML算法:基于动量的梯度优化器介绍

梯度下降 是机器学习框架中用于训练不同模型的一种优化技术。训练过程由目标函数(或误差函数)组成, 该函数确定机器学习模型在给定数据集上的误差。 在训练时, 该算法的参数被初始化为随机值。随着算法的迭代...
阅读全文
ML算法:Python中数据集的一种热编码 Python

ML算法:Python中数据集的一种热编码

有时在数据集中, 我们会遇到包含没有特定优先顺序的数字的列。列中的数据通常表示类别或类别的值, 并且在列中的数据经过标签编码时也是如此。这会混淆机器学习模型, 为避免这种情况, 列中的数据应进行一次热...
阅读全文