ML算法:独立成分分析 IT技术

ML算法:独立成分分析

先决条件:主成分分析 独立成分分析(ICA)是一种机器学习技术, 用于从混合信号中分离出独立的信号源。与主成分分析侧重于最大化数据点的方差不同, 独立成分分析侧重于独立性, 即独立成分。 问题: 从混...
阅读全文
ML:机器学习中的数据简介 IT技术

ML:机器学习中的数据简介

数据: 可以是任何未经解释和分析的未经处理的事实, 值, 文本, 声音或图片。数据是所有数据分析, 机器学习和人工智能中最重要的部分。没有数据, 我们就无法训练任何模型, 所有现代研究和自动化都将徒劳...
阅读全文
ML算法:内核PCA简介 IT技术

ML算法:内核PCA简介

主要成分分析: 是用于减少数据量的工具。它使我们能够在不损失大量信息的情况下减小数据量。 PCA通过找到方差最大的原始变量的一些正交线性组合(主要成分)来减小尺寸。 第一个主成分捕获数据中的大部分差异...
阅读全文
ML算法: K-means++算法详细指南 IT技术

ML算法: K-means++算法详细指南

先决条件: K均值聚类–简介 标准K均值算法的缺点: K-means算法的一个缺点是它对质心或均值的初始化很敏感。因此, 如果将质心初始化为"远距离"点, 则它可能最终没有与之关联的点, 并且同时, ...
阅读全文