特征缩放是一种在固定范围内标准化数据中存在的独立特征的技术。它是在数据预处理期间执行的。 加工: 给定具有以下特征的数据集-年龄, 工资, BHK公寓, 其数据大小为5000人, 每个人具有这些独立的...
ML用于特征选择的额外树分类器
先决条件: 决策树分类器 极随机树分类器(额外树分类器)是一种整体学习技术, 可将在"森林"中收集的多个不相关的决策树的结果进行汇总, 以输出其分类结果。从概念上讲, 它与随机森林分类器非常相似, 唯...
ML信用卡欺诈检测详细示例
面临的挑战是识别欺诈性的信用卡交易, 以便不向信用卡公司的客户收取未购买商品的费用。 信用卡欺诈检测所涉及的主要挑战是: 每天都会处理大量数据, 并且模型构建必须足够快才能及时响应骗局。 数据不平衡,...
ML Logistic回归中的成本函数
对于线性回归, 成本函数为– 但是对于Logistic回归, 这将导致非凸成本函数。但这会导致成本函数具有局部最优值, 这对于梯度下降计算全局最优值来说是一个很大的问题。 因此, 对于Logistic...
ML分类与回归介绍和区别
先决条件:分类和回归 分类和回归是两个主要的预测问题, 通常会与数据挖掘和机器学习一起处理。 分类是查找或发现模型或函数的过程, 该过程有助于将数据分为多个类别, 即离散值。在分类中, 根据输入中提供...
ML使用Scikit-learn进行癌细胞分类
机器学习是人工智能的一个子领域, 它使系统能够学习自身, 而无需进行显式编程即可学习。机器学习可用于解决许多现实问题。 让我们根据癌细胞的特征对它们进行分类,识别它们是“恶性的”还是“良性的”。我们将...
ML套袋分类器(Bagging分类器)指南
Bagging分类器是一个集合元估计器, 它使每个基本分类器适合原始数据集的随机子集, 然后将其单个预测(通过投票或平均)进行汇总以形成最终预测。通过将随机化引入其构造过程中, 然后对其进行整体化, ...
ML线性回归的波士顿房屋Kaggle挑战
波士顿房屋数据:该数据集取自StatLib库, 并由卡内基梅隆大学维护。该数据集涉及房屋城市波士顿的房价。提供的数据集具有506个实例和13个特征。 数据集描述取自 让我们建立线性回归模型, 预测房价...
Python Set中的最大值和最小值
在本文中, 我们将学习如何使用Python的内置函数在Python集合中获取最大和最小元素。 例子: Input : set = () Output : max is 65 Input : set =...
TABBY Hack用户标志的盒子演练
这是机器的用户标记演练或解决方案塔比在Hack The Box上。这台机器是基于Linux的机器, 我们必须同时拥有root和用户。它的难度等级是简单并有一个IP10.10.10.194对我来说, 这...