ML:机器学习中的数据简介 IT技术

ML:机器学习中的数据简介

数据: 可以是任何未经解释和分析的未经处理的事实, 值, 文本, 声音或图片。数据是所有数据分析, 机器学习和人工智能中最重要的部分。没有数据, 我们就无法训练任何模型, 所有现代研究和自动化都将徒劳...
阅读全文
ML算法:内核PCA简介 IT技术

ML算法:内核PCA简介

主要成分分析: 是用于减少数据量的工具。它使我们能够在不损失大量信息的情况下减小数据量。 PCA通过找到方差最大的原始变量的一些正交线性组合(主要成分)来减小尺寸。 第一个主成分捕获数据中的大部分差异...
阅读全文
ML算法: K-means++算法详细指南 IT技术

ML算法: K-means++算法详细指南

先决条件: K均值聚类–简介 标准K均值算法的缺点: K-means算法的一个缺点是它对质心或均值的初始化很敏感。因此, 如果将质心初始化为"远距离"点, 则它可能最终没有与之关联的点, 并且同时, ...
阅读全文
ML算法:局部加权线性回归 IT技术

ML算法:局部加权线性回归

先决条件:ML |线性回归 线性回归是一种监督型学习算法, 用于计算输入(X)和输出(Y)之间的线性关系。 普通线性回归涉及的步骤是: 培训阶段:计算以最小化成本。预测输出:对于给定的查询点, 从下图...
阅读全文
ML算法:使用Python进行Logistic回归 Python

ML算法:使用Python进行Logistic回归

先决条件:了解逻辑回归 用户数据库–该数据集包含来自公司数据库的用户信息。它包含有关用户ID, 性别, 年龄, 预估工资, 已购买的信息。我们正在使用该数据集预测用户是否会购买公司的新产品。 数据– ...
阅读全文
ML算法:Logistic回归与决策树分类 Python

ML算法:Logistic回归与决策树分类

逻辑回归和决策树分类是当今使用的两种最流行和最基本的分类算法。没有一种算法比另一种算法更好, 并且一个人的出色性能通常归因于正在处理的数据的性质。 我们可以在不同类别上比较这两种算法– 标准 逻辑回归...
阅读全文
ML:什么是机器学习? Python

ML:什么是机器学习?

人工智能和电脑游戏领域的先驱阿瑟·塞缪尔创造了“机器学习”这个术语。他将机器学习定义为:“一种研究领域,它让计算机能够在没有明确编程的情况下进行学习。” 以非常普通的方式, 机器学习(ML)可以解释为...
阅读全文
ML算法:均值漂移聚类详细介绍 Python

ML算法:均值漂移聚类详细介绍

均值漂移与无监督学习相反, 无监督学习通过将点朝着模式转移来将数据点迭代地分配给聚类(在均值偏移的情况下, 模式是该区域中数据点的最高密度)。因此, 它也被称为寻模算法。均值漂移算法在图像处理和计算机...
阅读全文